Skip to main content
Log in

Decomposition Rates and Community Structure of Arthropods in the Litter of Invasive Solidago gigantea Do Not Support the Home-Field Advantage Hypothesis

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Decomposition rates of an invasive plant litter in native-species communities can be slower, since decomposers are not adapted to the litter of the invasive species. We have compared rates of plant decomposition and the structure of arthropod communities during the incubation of the litter of the invasive giant goldenrod Solidago gigantea (Asteraceae) and three native species (Urtica dioica, Cirsium arvense, and Chamaenerion angustifolium) in the biotopes with dominance of local and invasive plant species. Our results suggest that the arthropod community involved in decomposition of S. gigantea and other species is not species specific and does not provide a higher or lower rate of decomposition of the invasive species. Neither the rate of litter decomposition, nor the structure and diversity of arthropod communities support the home-field advantage hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Gholz, H.L., Wedin, D.A., Smitherman, S.M., et al., Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition, GCB, 2000, vol. 6, no. 7, pp. 751–765.

    Google Scholar 

  2. Ayres, E., Steltzer, H., Simmons, B.L., et al., Home-field advantage accelerates leaf litter decomposition in forests, Soil Biol. Biochem., 2009, vol. 41, no. 3, pp. 606–610.

    Article  CAS  Google Scholar 

  3. Veen, G.F., Freschet, G.T., Ordonez, A., and Wardle, D.A., Litter quality and environmental controls of home-field advantage effects on litter decomposition, Oikos, 2015, vol. 124, no. 2, pp. 187–195.

    Article  Google Scholar 

  4. Ehrenfeld, J.G., Effects of exotic plant invasions on soil nutrient cycling processes, Ecosystems, 2003, vol. 6, no. 6, pp. 503–523.

    Article  CAS  Google Scholar 

  5. Allison, S.D. and Vitousek, P.M., Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i, Oecologia, 2004, vol. 141, no. 4, pp. 612–619.

    Article  Google Scholar 

  6. Ashton, I.W., Hyatt, L.A., Howe, K.M., et al., Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest, Ecol. Appl., 2005, vol. 15, no. 4, pp. 1263–1272.

    Article  Google Scholar 

  7. Samye opasnye invazionnye vidy Rossii (TOP-100) (The most Dangerous Invasive Species in Russia (TOP-100)), Dgebuadze, Yu.Yu., Petrosyan, V.G., and Khlyap, L.A., Eds., Moscow: KMK, 2018.

    Google Scholar 

  8. Berg, B. and McClaugherty, C., Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, Berlin: Springer-Verlag, 2008.

    Book  Google Scholar 

  9. R Core Team. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 2020.

    Google Scholar 

  10. Perez, G., Aubert, M., Decaëns, T., et al., Home-Field Advantage: A matter of interaction between litter biochemistry and decomposer biota, Soil Biol. Biochem., 2013, vol. 67, pp. 245–254.

    Article  CAS  Google Scholar 

  11. Ayres, E., Steltzer, H., Berg, S., and Wall, D.H., Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them, J. Ecol., 2009, vol. 97, no. 5, pp. 901–912.

    Article  Google Scholar 

  12. Canty, A. and Ripley, B., Boot: Bootstrap R (S-Plus) functions (R package version 1.3-9), R Foundation for Statistical Computing, Vienna, 2013.

    Google Scholar 

  13. Oksanen, J., Kindt, R., Legendre, P., et al., The vegan package, Community Ecology Package, 2007, vol. 10, pp. 631–637.

    Google Scholar 

  14. McTee, M.R., Lekberg, Y., Mummey, D., et al., Do invasive plants structure microbial communities to accelerate decomposition in intermountain grasslands?, Ecol. Evol., 2017, vol. 7, no. 24, pp. 11227–11235.

    Article  Google Scholar 

  15. Gießelmann, U.C., Martins, K.G., Brändle, M., et al., Lack of home-field advantage in the decomposition of leaf litter in the Atlantic Rainforest of Brazil, Appl. Soil Ecol., 2011, vol. 49, pp. 5–10.

    Article  Google Scholar 

  16. John, M.G.S., Orwin, K.H., and Dickie, I.A., No ‘home’ versus ‘away’ effects of decomposition found in a grassland–forest reciprocal litter transplant study, Soil Biol. Biochem., 2011, vol. 43, no. 7, pp. 1482–1489.

    Article  Google Scholar 

  17. Gartner, T.B. and Cardon, Z.G., Decomposition dynamics in mixed-species leaf litter, Oikos, 2004, vol. 104, no. 2, pp. 230–246.

    Article  Google Scholar 

  18. Hättenschwiler, S., Tiunov, A.V., and Scheu, S., Biodiversity and litter decomposition in terrestrial ecosystems, Annu. Rev. Ecol. Evol. Syst., 2005, vol. 36, pp. 191–218.

    Article  Google Scholar 

  19. Shilenkova, O.L. and Tiunov, A.V., Soil-litter nitrogen transfer and changes in δ13C and δ15N values in decomposing leaf litter during laboratory incubation, Pedobiologia, 2013, vol. 56, no. 3, pp. 147–152.

    Article  CAS  Google Scholar 

  20. Gergócs, V., Rétháti, G., and Hufnagel, L., Litter quality indirectly influences community composition, reproductive mode and trophic structure of oribatid mite communities: a microcosm experiment, Exp. Appl. Acarol., 2015, vol. 67, no. 3, pp. 335–356.

    Article  Google Scholar 

  21. Stefanowicz, A.M., Stanek, M., Nobis, M., and Zubek, S., Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities, Biol. Fertil. Soils, 2016, vol. 52, no. 6, pp. 841–852.

    Article  CAS  Google Scholar 

  22. Wang, C., Jiang, K., Zhou, J., and Wu, B., Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China, Sci. Total Environ., 2018, vol. 631, pp. 702–713.

    Article  Google Scholar 

  23. Zhang, C.B., Wang, J., Qian, B.Y., and Li, W.H., Effects of the invader Solidago canadensis on soil properties, Appl. Soil Ecol., 2009, vol. 43, nos. 2–3, pp. 163–169.

    Article  CAS  Google Scholar 

  24. Scharfy, D., Güsewell, S., Gessner, M.O., and Venterink, H.O., Invasion of Solidago gigantea in contrasting experimental plant communities: effects on soil microbes, nutrients and plant-soil feedbacks, J. Ecol., 2010, vol. 98, no. 6, pp. 1379–1388.

    Article  Google Scholar 

  25. Sterzyńska, M., Shrubovych, J., and Nicia, P., Impact of plant invasion (Solidago gigantea L.) on soil mesofauna in a riparian wet meadows, Pedobiologia, 2017, vol. 64, pp. 1–7.

    Article  Google Scholar 

  26. Ustinova, E.N., Schepetov, D.M., Lysenkov, S.N., and Tiunov, A.V., Soil arthropod communities are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and metabarcoding analyses, Soil Biol. Biochem., 2021, vol. 159, art. ID 108288.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the experts who carried out taxonomic identification of soil arthropods: Collembola—A.Yu. Korotkevich (Moscow State Pedagogical University, Zoology and Ecology Department); Oribatida—V.D. Leonov (Institute of Ecology and Evolution, Russian Academy of Sciences); Mesostigmata—M.S. Bizin (Institute of Ecology and Evolution, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ustinova.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinova, E.N., Maslov, M.N., Lysenkov, S.N. et al. Decomposition Rates and Community Structure of Arthropods in the Litter of Invasive Solidago gigantea Do Not Support the Home-Field Advantage Hypothesis. Russ J Ecol 53, 328–334 (2022). https://doi.org/10.1134/S1067413622040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413622040063

Keywords:

Navigation