Skip to main content
Log in

Soil Respiration Variability: Contributions of Space and Time Estimated Using the Random Forest Algorithm

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Soil respiration modeling (i.e., simulation of carbon dioxide emissions from the soil surface) makes it possible to analyze and forecast changes in the carbon cycle in terrestrial ecosystems. Along with classical regression models, researchers currently use machine learning methods based on neural networks or regression tree ensembles. However, models produced using these methods are often used as ‘black boxes’, which hinders the analysis of process mechanisms. This paper demonstrates capabilities of the Random Forest algorithm that can be successfully used to estimate effects exercised by various factors on soil respiration based on features importance measurements. Using variance separation, predictors have been classified either as spatial (biotope type, soil type, vegetation type, and soil moisture content) or temporal (soil and air temperature, NDVI, LAI, FPAR, and SPEI). Several models were produced based on 5670 respiration measurements performed during five growing seasons (2012–2016) on 30 sampling plots in south-taiga pine forests and meadows that feature different vegetation and soil types but are confined to the same small area. Different models include different sets of predictors (all predictors, temporal predictors only, spatial predictors only, and temperature and humidity only), and their accuracy reaches R2 = 0.88 (MSE = 0.47). It is established that soil respiration depends primarily on temporal factors whose importance ranges from 76 to 91%. In forests, the effect of spatial factors on respiration is stronger than in meadows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Priputina, I.V., Bykhovets, S.S., Frolov, P.V., et al., Application of mathematical models ROMUL and Romul_Hum for estimating CO2 emission and dynamics of organic matter in albic luvisol under deciduous forest in the south of Moscow oblast, Eurasian Soil Sci., 2020, no. 53, pp. 1480–1491.

  2. Reiners, W.A., Carbon dioxide evolution from the floor of three minnesota forests, Ecology, 1968, vol. 49, no. 3, pp. 471–483. https://doi.org/10.2307/1934114

    Article  Google Scholar 

  3. Nevedrov, N.P., Sarzhanov, D.A., Protsenko, E.P., and Vasenev, I.I., Seasonal dynamics of CO2 emission from soils of Kursk, Eurasian Soil Sci., 2021, vol. 54, pp. 80–88.

    Article  CAS  Google Scholar 

  4. Chimner, R.A., Soil respiration rates of tropical peatlands in Micronesia and Hawaii, Wetlands, 2004, vol. 24, no. 1, art. ID 51. https://doi.org/10.1672/0277-5212(2004)024[0051:SRROTP]2.0.CO;2

    Article  Google Scholar 

  5. Jia, B., Zhou, G., Wang, F., and Wang, Y., A comparative study on soil respiration between grazing and fenced typical Leymus chinensis steppe, Inner Mongolia, Chin. J. Appl. Ecol., 2004, vol. 15, no. 9, pp. 1611–1615.

    Google Scholar 

  6. Orchard, V.A. and Cook, F.J., Relationship between soil respiration and soil moisture, Soil Biol. Biochem., 1983, vol. 15, no. 4, pp. 447–453. https://doi.org/10.1016/0038-0717(83)90010-X

    Article  Google Scholar 

  7. Rubio, V.E. and Detto, M., Spatiotemporal variability of soil respiration in a seasonal tropical forest, Ecol. Evol., 2017, vol. 7, no. 17, pp. 7104–7116. https://doi.org/10.1002/ece3.3267

    Article  PubMed  PubMed Central  Google Scholar 

  8. Webster, K.L., Creed, I.F., Skowronski, M.D., and Kaheil, Y.H., Comparison of the performance of statistical models that predict soil respiration from forests, Soil Sci. Soc. Am. J., 2009, vol. 73, no, 4. pp. 1157–1167. https://doi.org/10.2136/sssaj2008.0310

    Article  CAS  Google Scholar 

  9. Sotta, E.D., Meir, P., Malhi, Y., Donato, A., et al., Soil CO2 efflux in a tropical forest in the central Amazon, Global Change Biol., 2004, vol. 10, no. 5, pp. 601–617. https://doi.org/10.1111/j.1529-8817.2003.00761.x

    Article  Google Scholar 

  10. Tufekcioglu, A., Raich, J.W., Isenhart, T.M., and Schultz, R.C., Soil respiration within riparian buffers and adjacent crop fields, Plant Soil, 2001, vol. 229, no. 1, pp. 117–124. https://doi.org/10.1023/A:1004818422908

    Article  CAS  Google Scholar 

  11. Lloyd, J. and Taylor, J.A., On the temperature dependence of soil respiration, Funct. Ecol., 1994, vol. 8, no. 3, pp. 315–323. https://doi.org/10.2307/2389824

    Article  Google Scholar 

  12. Karelin, D.V., Pochikalov, A.V., Zamolodchikov, D.G., and Gitarskii, M.L., Factors of spatiotemporal variability of CO2 fluxes from soils of southern taiga spruce forests of Valdai, Lesovedenie, 2014, no. 4, pp. 56–66.

  13. Karelin, D.V., Zamolodchikov, D.G., and Isaev, A.S., Little-known pulse components of soil carbon dioxide emission in taiga forests, Dokl. Ross. Akad. Nauk, 2017, vol. 75, no. 4, pp. 473–476.

    Google Scholar 

  14. Zeng, X.H., Song Y.G., Zeng, C.M., et al., Partitioning soil respiration in two typical forests in semi-arid regions, North China, Catena, 2016, vol. 147, pp. 536–544. https://doi.org/10.1016/j.catena.2016.08.009

    Article  Google Scholar 

  15. Kuzyakov, Y. and Gavrichkova, O., Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls, Global Change Biol., 2010, vol. 16, no. 12, pp. 3386–3406. https://doi.org/10.1029/2005JG000063

    Article  CAS  Google Scholar 

  16. Richardson, A.D., Braswell, B.H., Hollinger, D.Y., et al., Comparing simple respiration models for eddy flux and dynamic chamber data, Agric. For. Meteorol., 2006, vol. 141, nos. 2–4, pp. 219–234. https://doi.org/10.1016/j.agrformet.2006.10.010

    Article  Google Scholar 

  17. Farhate, C.V.V., Souza, Z.M., Oliveira, S.R.M., et al., Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field, PLoS ONE, 2018, vol. 13, no. 3, art. ID e0193537. https://doi.org/10.1371/journal.pone.0193537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jarvi, L., Nordbo, A., Junninen, H., et al., Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010, Atmos. Chem. Phys., 2012, vol. 12, no. 18, pp. 8475–8489. https://doi.org/10.5194/acp-12-8475-2012

    Article  CAS  Google Scholar 

  19. Zhao, Z.Y., Peng, C.H., Yang Q., et al., Model prediction of biome-specific global soil respiration from 1960 to 2012, Earth’s Future, 2017, vol. 5, no. 7, pp. 715–729. https://doi.org/10.1002/2016ef000480

    Article  Google Scholar 

  20. Song, X.Z., Peng, C.H., Zhao, Z.Y., et al., Quantification of soil respiration in forest ecosystems across China, Atmos. Environ., 2014, vol. 94, pp. 546–551. https://doi.org/10.1016/j.atmosenv.2014.05.071

    Article  CAS  Google Scholar 

  21. Rudin, C., Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nat. Mach. Intell., 2019, vol. 1, no. 5, pp. 206–215. https://doi.org/10.1038/s42256-019-0048-x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chistyakov, S.P., Random forests: an overview, Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2013, no. 1, pp. 117–136.

  23. Hastie, T., Tibshirani, R., and Friedman, J., Random Forests, in the Elements of Statistical Learning: Data Mining, Inference, and Prediction, New-York: Springer-Verlag, 2009, pp. 587–604.

  24. Tang, X.L., Fan, S.H., Du, M.Y., et al., Spatial and temporal patterns of global soil heterotrophic respiration in terrestrial ecosystems, Earth Syst. Sci. Data, 2020, vol. 12, no. 2, pp. 1037–1051. https://doi.org/10.5194/essd-12-1037-2020

    Article  Google Scholar 

  25. Berryman, E.M., Vanderhoof, M.K., Bradford, J.B., et al., Estimating soil respiration in a subalpine landscape using point, terrain, climate, and greenness data, J. Geophys. Res.: Biogeosci., 2018, vol. 123, no. 10, pp. 3231–3249. https://doi.org/10.1029/2018jg004613

    Article  Google Scholar 

  26. Jian, J.S., Steele, M.K., Thomas, R.Q., et al., Constraining estimates of global soil respiration by quantifying sources of variability, GCB Bioenergy, 2018, vol. 24, no. 9, pp. 4143–4159. https://doi.org/10.1111/gcb.14301

    Article  Google Scholar 

  27. Lu, H.B., Li, S.H., Ma, M.N., et al., Comparing machine learning-derived global estimates of soil respiration and its components with those from terrestrial ecosystem models, Environ. Res. Lett., 2021, vol. 16, no. 5, art. ID 054048. https://doi.org/10.1088/1748-9326/abf526

    Article  CAS  Google Scholar 

  28. Shiri, N., Shiri, J., Kazemi, M.H., and Xu, T.R., Estimation of CO2 flux components over northern hemisphere forest ecosystems by using random forest method through temporal and spatial data scanning procedures, Environ. Sci. Pollut. Res., 2022, vol. 29, no. 11, pp. 16123–16137. https://doi.org/10.1007/s11356-021-16501-x

    Article  CAS  Google Scholar 

  29. Warner, D.L., Bond-Lamberty, B., Jian, J., et al., Spatial predictions and associated uncertainty of annual soil respiration at the global scale, Global Biogeochem. Cycles, 2019, vol. 33, no. 12, pp. 1733–1745. https://doi.org/10.1029/2019gb006264

    Article  CAS  Google Scholar 

  30. Mukhortova, L., Schepaschenko, D., Moltchanova, E., et al., Respiration of Russian soils: Climatic drivers and response to climate change, Sci. Total Environ., 2021, vol. 785, art. ID 147314. https://doi.org/10.1016/j.scitotenv.2021.147314

    Article  CAS  Google Scholar 

  31. Jian, J.S., Frissell, M., Hao, D.L., et al., The global contribution of roots to total soil respiration, Global Ecol. Biogeography, 2022, vol. 31, no. 4, pp. 685–699. https://doi.org/10.1111/geb.13454

    Article  Google Scholar 

  32. Luo, Y. and Zhou, X., Soil Respiration and the Environment, Burlington: Acad. Press, 2006.

    Google Scholar 

  33. Smorkalov, I.A., The ratio of spatial and temporal variability of soil respiration, Materialy Vserossiiskoi konferentsii molodykh uchenykh “Ekologiya: fakty, gipotezy, modeli” (Proc. Int. All-Russian Conf. Young Scientists), Ekaterinburg, 2016, pp. 120–123.

  34. Lupyan, E.A., Savin, I.Yu., Bartalev, S.A., et al., Satellite service for vegetationmonitoring Vega, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011, vol. 8, no. 1, pp. 190–198.

    Google Scholar 

  35. Wu, J.S. and Fu, G., Modelling aboveground biomass using MODIS FPAR/LAI data in alpine grasslands of the Northern Tibetan Plateau, Remote Sens. Lett., 2018, vol. 9, no. 2, pp. 150–159. https://doi.org/10.1080/2150704x.2017.1407045

    Article  Google Scholar 

  36. Liu, S., Cheng, F., Dong, S., et al., Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI, Sci. Rep., 2017, vol. 7, no. 1, art. ID 4182. https://doi.org/10.1038/s41598-017-04038-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, X.F., Wang, H.B., Li, X., and Ran, Y.H., Photosynthesis (NPP, NEP, Respiration), Observation and Measurement, Li, X. and Vereecken, H., Eds., Heidelberg, 2017, pp. 1–30.

    Google Scholar 

  38. Reynolds, L.L., Johnson, B.R., Pfeifer-Meister, L., and Bridgham, S.D., Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient, GCB Bioenergy, 2015, vol. 21, no. 1, pp. 487–500. https://doi.org/10.1111/gcb.12732

    Article  Google Scholar 

  39. Ding, S.C., Yao, X.W., Wang, J., et al., Relationships between soil respiration and hyperspectral vegetation indexes and crop characteristics under different warming and straw application modes, Environmental Science and Pollution Research, 2021, vol. 28, no. 30, pp. 40756–40770. https://doi.org/10.1007/s11356-021-13612-3

    Article  PubMed  Google Scholar 

  40. Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I., A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 2010, vol. 23, no. 7, pp. 1696–1718. https://doi.org/10.1175/2009jcli2909.1

    Article  Google Scholar 

  41. Beguería, S., Vicente-Serrano, S.M., Reig, F., and Latorre, B., Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring, Int. J. Climatol., 2014, vol. 34, no. 10, pp. 3001–3023. https://doi.org/10.1002/joc.3887

    Article  Google Scholar 

  42. VCA: Variance Component Analysis. R package version 1.4.2. https://CRAN.R-project.org/package=VCA.

  43. Caret: Classification and Regression Training version 6.0-86. https://cran.r-project.org/package=caret.

  44. RandomForest: Breiman and Cutler’s Random Forests for classification and regression version 4.6-14. https://cran.r-project.org/package=randomForest.

  45. Osipov, A.F., Effect of interannual difference in weather conditions of the growing season on the Co2 emission from the soil surface in the middle-taiga cowberry–lichen pine forest (Komi Republic), Eurasian Soil Sci., 2018, vol. 51, no. 12, pp. 1419–1426.

    Article  Google Scholar 

  46. Glukhova, T.V., Vomperskii, S.E., and Kovalev, A.G., Emission of CO2 from the surface of oligotrophic bogs with due account for their microrelief in the southern taiga of European Russia, Pochvovedenie, 2014, no. 1, pp. 48–57.

  47. Kadulin, M.S. and Koptsik, G.N., Emission of CO2 by soils in the impact zone of the Severonikel smelter in the Kola subarctic region, Eurasian Soil Sci., 2013, vol. 46, pp. 1107–1116. https://doi.org/10.7868/S0032180X13110063

    Article  CAS  Google Scholar 

  48. Mashika, A.V., Carbon dioxide emission from the surface of podzolic soils, Eurasian Soil Sci., 2006, vol. 39, pp. 1312–1317.

    Article  Google Scholar 

  49. Smorkalov, I.A. and Vorobeichik, E.L., Soil respiration of forest ecosystems in gradients of environmental pollution by emissions from copper smelters, Russ. J. Ecol., 2011, vol. 42, art. ID 464.

    Article  CAS  Google Scholar 

  50. Kozlov, M.V., Zvereva, E.L., and Zverev, V.E., Impacts of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Contaminated Areas, Dordrecht: Springer-Verlag, 2009.

    Book  Google Scholar 

  51. Takakai, F., Desyatkin, A.R., Lopez, C.M.L., et al., Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia, Soil Sci. Plant Nutr., 2008, vol. 54, no. 6, pp. 938–949.

    Article  CAS  Google Scholar 

  52. Kurganova, I.N., Lopes de Gerenyu, V.O., Rozanova, L.N., and Kudeyarov, V.N., Annual and seasonal CO2 fluxes from Russian southern taiga soils, Tellus B., 2001, vol. 55, pp. 338–344.

    Article  Google Scholar 

  53. Wang, M., Liu, X.T., Li, X.J., et al., Soil respiration dynamics and its controlling factors of typical vegetation communities on meadow steppes in the western Songnen Plain, Chinese J. Appl. Ecol., 2014. vol. 25, no. 1, pp. 45–52. https://doi.org/10.1029/2009GB003538

    Article  CAS  Google Scholar 

  54. Bahn, M., Rodeghiero, M., Anderson-Dunn, M., et  al., Soil respiration in European grasslands in relation to climate and assimilate supply, Ecosystems, 2008, vol. 11, no. 8, pp. 1352–1367. https://doi.org/101029/2005JG000063

    Article  CAS  Google Scholar 

  55. Perez-Quezada, J.F., Saliendra, N.Z., Akshalov, K., et al., Land use influences carbon fluxes in northern Kazakhstan, Rangeland Ecol. Manage., 2010, vol. 63, no. 1, pp. 82–93.

    Article  Google Scholar 

  56. Shibistova, O., Lloyd, J., Zrazhevskaya, G., et al., Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia, Tellus, Ser. B: Chem. Phys. Meteorol., 2002, vol. 54, no. 5, pp. 568–589.

    Article  Google Scholar 

  57. Kurganova, I.N. and Kudeyarov, V.N., The assessment of carbon dioxide fluxes from Russian south taiga soils, Eurasian Soil Sci., 1998, vol. 31, pp. 954–965.

    Google Scholar 

  58. Kudeyarov, V.N. and Kurganova, I.N. Respiration of Russian Soils: Database Analysis, Long-Term Monitoring, and General Estimates, Eurasian Soil Sci., 2005, vol. 38, no. 9, pp. 983–992.

    Google Scholar 

  59. Raich, J.W. and Tufekcioglu, A., Vegetation and soil respiration: Correlations and controls, Biogeochemistry, 2000, vol. 48, no. 1, pp. 71–90.

    Article  CAS  Google Scholar 

  60. Kurganova, I.N., Lopes de Gerenyu, V.O., Khoroshaev, D.A., et al., Analysis of the long-term soil respiration dynamics in the forest and meadow cenoses of the prioksko-terrasny biosphere reserve in the perspective of current climate trends, Eurasian Soil Sci., 2020, vol. 53, pp. 1421–1436.

    Article  CAS  Google Scholar 

  61. Kudeyarov, V.N., Khakimov, F.I., Deeva, N.F., et al., Assessment of Russian soils respiration, Pochvovedenie, 1995, no. 1, pp. 33–42.

  62. Tavares, R.L.M., Oliveira, S.R.D., de Barros, F.M.M., et al., Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach, Sci. Agric., 2018, vol. 75, no. 4, pp. 281–287. https://doi.org/10.1590/1678-992x-2017-0095

    Article  CAS  Google Scholar 

  63. Magnani, M., Baneschi, I., Giamberini, M., et al., Drivers of carbon fluxes in Alpine tundra: a comparison of three empirical model approaches, Sci. Total Environ., 2020, vol. 732, art. ID 139139. https://doi.org/10.1016/j.scitotenv.2020.139139

    Article  CAS  PubMed  Google Scholar 

  64. Lecki, N.A. and Creed, I.F., Forest soil CO2 efflux models improved by incorporating topographic controls on carbon content and sorption capacity of soils, Biogeochemistry, 2016, vol. 129, no. 3, pp. 307–323. https://doi.org/10.1007/s10533-016-0233-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, N., Wang, L., Song, X.P., et al., Spatial and temporal variations in global soil respiration and their relationships with climate and land cover, Sci. Adv., 2020, vol. 6, no. 41, art. ID eabb8508. https://doi.org/10.1126/sciadv.abb8508

    Article  PubMed  PubMed Central  Google Scholar 

  66. Smorkalov, I.A. and Bedin, D.A., Accounting for industrial pollution in soil respiration models, Materialy 6-i natsional’noi nauchnoi konferentsii s mezhdunarodnym uchastiem “Matematicheskoe modelirovanie v ekologii” (Proc. 6th National Sci. Conf. with International Participation “Mathematical modeling in ecology”), Pushchino, 2019, pp. 191–193.

  67. Parolari, A.J., Sizemore, J., and Katul, G.G., Multiscale legacy responses of soil gas concentrations to soil moisture and temperature fluctuations, J. Geophys. Res.: Biogeosci., 2021, vol. 126, no. 2, art. ID e2020JG005865. https://doi.org/10.1029/2020jg005865

  68. Besnard, S., Carvalhais, N., Arain, M.A., et al., Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests, PLoS ONE, 2019, vol. 14, no. 2, art. ID e0211510. https://doi.org/10.1371/journal.pone.0211510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kurganova, I.N., Lopes de Gerenyu, V.O., Myakshina, T.N., et al., CO2 emission from soils of various ecosystems of the Southern Taiga Zone: Data analysis of continuous 12-year monitoring, Dokl. Biol. Sci., 2011, vol. 436, no. 6, pp. 56–58.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to D.A. Bedin for consulting on machine learning, to E.L. Vorobeichik for useful comments and assistance in manuscript improvement, to S.Yu. Kaigorodov and T.Yu. Gabershtein for soil diagnostics and analysis, and to N.O. Sadykova for discussing the text and commenting on it.

Funding

The field studies were supported by the Ural Branch, Russian Academy of Sciences, project no. 12-P-4-1057; the data analysis and preparation of this article, by the Ministry of Science and Higher Education of the Russian Federation, projects no. 122021000076-9 and FEUZ-2021-0014, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Smorkalov.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smorkalov, I.A. Soil Respiration Variability: Contributions of Space and Time Estimated Using the Random Forest Algorithm. Russ J Ecol 53, 295–307 (2022). https://doi.org/10.1134/S1067413622040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413622040051

Keywords:

Navigation