Skip to main content
Log in

Impact of the Development of Hydrocarbon Deposits on Water Ecosystems of the Yamal Peninsula

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Data of monitoring studies (2014–2016) on the state of hydrobionts in watercourses during the development of a hydrocarbon deposit on the Yamal Peninsula have been analyzed. The increased content of suspended solids has the greatest effect on hydrobionts. While the background values of concentration of suspended solids is 4–6 mg/L, in the area of the entrance of the pit effluents to the watercourses, their concentration increases up to 440 mg/L and higher. The effect of increased turbidity on the qualitative and quantitative indicators of planktonic organisms has not been found. An increase of suspended solids in water has a negative effect on zoobenthos (rSp = –0.426, p = 0.030 for the number of species; rSp = –0.590, p = 0.002 for the abundance; rSp = –0.480, p = 0.013 for the biomass) and fish (rSp = –0.567, p = 0.004 for ecological density of small fish species). Especially sensitive fish to the increased content of suspended solids are whitefishes and lake minnows. The most tolerant to turbidity are the nine-spined stickleback and Barbatula toni. Increased concentrations of suspended solids in autumn are the reason for the cessation of up-stream migration of whitefishes from the Gulf of Ob to the deep lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Voronkov, N.V., Plankton in waterbodies of the Yamal Peninsula, Ezheg. Zool. Muz. Imper. Akad. Nauk S.-Peterb., 1911, vol. 16, no. 2, pp. 180–214.

    Google Scholar 

  2. Vereshchagin, G.Yu., Plankton in waterbodies of the Yamal Peninsula, Ezheg. Zool. Muz. Imper. Akad. Nauk S.-Peterb., 1913, vol. 18, no. 2, pp. 169–220.

    Google Scholar 

  3. Zhitkov, B.M., Poluostrov Yamal, Zap. Russ. Geogr. O-va. S.-Peterb., 1913, vol. 49.

    Google Scholar 

  4. Kulikova, E.B., Whitefish of Yamal, Tr. Inst. Okean. Akad. Nauk SSSR, 1960, vol. 31, pp. 111–144.

    Google Scholar 

  5. Venglinskii, D.L., Commercial species of water bodies of the Yamal Peninsula, in Sbornik rabot kafedry ikhtiologii i rybovodstva i nauchno-issledovatel’skoi laboratorii rybnogo khozyaistva (Collection of works of the Department of Ichthyology and Fisheries and the Research Laboratory of Fisheries) Moscow, 1971, pp. 61–67.

  6. Slepokurava, N.A. and Nikiforova, L.G., The study of zooplankton and zoobenthos of the lakes of the Yamal Peninsula, Produktivnost’ vodoemov raznykh klimaticheskikh zon RSFSR i perspektivy ikh rybakhozyaistvennogo ispol’zovaniya (Productivity of Water Bodies in Different Climatic Zones of the RSFSR and Prospects for Their Fishery Use), Krasnoyarsk, 1978, pp. 80–82.

  7. Mel'nichenko, S.M. and Mel’nichenko, I.P., The ichthyofauna of the lower reaches of the river Morda–Yakha of the Yamal Peninsula, Biologicheskie resursy Belogo morya i vnutrennikh vodoemov Evropeiskogo Severa (Biological resources of the White Sea and Inland Waters of the European North), Syktyvkar, 1990.

  8. Sovremennoe sostoyanie rastitel’nogo i zhivotnogo mira poluostrova Yamal (The Current State of Flora and Fauna of the Yamal Peninsula), Balakhonov, V.S., Ed., Ekaterinburg: Nauka, 1995.

    Google Scholar 

  9. Monitoring bioty poluostrova Yamal v svyazi s razvitiem ob"ektov dobychi i transporta gaza (Biota monitoring of the Yamal Peninsula in Connection with the Development of Gas Production and Transportation Facilities), Ekaterinburg: Aerokosmoekologiya, 1997.

  10. Moskalenko, B.K., Materials for the biology of whitefishes of the Ob gulf, Izv. Vseross. Inst. Organ. Rybn. Khoz., 1958, vol. 44, pp. 74–94.

    Google Scholar 

  11. Dobrinskaya, L.A, Study of whitefishes of the Ob River during the period of anadromous migration, Materialy po faune Priobskogo Severa i ee ispol’zovaniyu (Materials on the Fauna of the Ob North and its Use), Tyumen, 1959, pp. 32–57.

  12. Brusynina, I.N., Biology and fishery of vendace in the Ob and Taz bays, Tr. Salekhard. Statsionara Ural. Otd. Ross. Akad. Nauk SSSR, Sverdlovsk, 1963, pp. 18–30.

    Google Scholar 

  13. Andrienko, E.K., Biological characteristics, fisheries and the state of stocks of the Novoportovskoye herd of vendace in the Gulf of Ob, Vtoroe Vsesoyuz. soveshchaniye po biologii i biotekhnike razvedeniya sigovykh ryb (2nd All-Russ. Conf. in Biology and Biotechnology of Whitefish Breeding), Petrozavodsk, 1981, pp. 111–113.

  14. Stepanov, L.N., Diversity of the zoobenthos of water bodies and water courses of the Setnaya and Ngoyakha Rivers basins (the Yamal Peninsula, the Yamal-Nenets autonomous district), Fauna Ural. Sibir., 2016, no. 1, pp. 90–104.

  15. Bogdanov, V.D., Stepanov, L.N., Bogdanova, Ye.N., et al., Evaluation of the current state of aquatic ecosystems and the problems of the protection of biological resources during development of Kruzenshternskoye GCF, Econ. Reg., 2015, vol. 1, no. 3, pp. 505–514. https://doi.org/10.15826/recon.2015.3.014

    Article  Google Scholar 

  16. Lezin, V.A., Reki Yamalo-Nenetskogo avtonomnogo okruga. Spravochnoe posobie (Rivers of the Yamalo-Nenets Autonomous Okrug. Handbook), Tyumen’: “Vektor Buk”, 2000.

  17. Choo, F., Zamyadi, A., Newton, K., et al., Performance evaluation of in situ fluorometers for real–time cyanobacterial monitoring, H2 Open J., 2018, vol. 1, no. 1, pp. 26–46. https://doi.org/10.2166/h2oj.2018.009

  18. Mineeva, N.M. and Shchur, L.A., Chlorophyll a content in phytoplankton biomass (Review), Al’gologiya, 2012, vol. 22, no. 4, pp. 441–456.

    Google Scholar 

  19. Metodika izucheniya biogeotsenozov vnutrennikh vodoemov (Methodology for Studying Biogeocenoses of Inland Waters), Moscow: Nauka, 1975.

  20. Vasser, S.P., Kondrat’eva, N.V., Masyuk, N.P., et al., Vodorosli. Spravochnik. (Algae. Handbook.), Kiev: Naukova Dumka, 1989.

  21. Tynybekov, A.K., Method for calculating phytoplankton cell volumes, Issledovanie zhivoi prirody Kyrgyzstana (Wildlife Research of Kyrgyzstan), 2021, no. 2, pp. 163–166.

  22. Kutikova, L.A., Kolovratki fauny SSSR (Rotifers of the Fauna of USSR), Leningrad: Nauka, 1970.

  23. Guidelines for the collection and processing of materials in hydrobiological studies in freshwater bodies, Zooplankton i ego produktsiya (Zooplankton and Its Production), Leningrad: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz, 1982.

  24. Maruzi, I.V., Pishchenko, E.V., and Vesnina, L.V., Praktikum po gidrobiologii (Workshop on Hydrobiology), Novosibirsk, 2008.

  25. Opredelitel' zooplanktona i zoobentosa presnykh vod Evropeiskoi Rossii. T.1. Zooplankton (Key to Zooplankton and Zoobenthos of Fresh Water in European Russia. Vol. 1. Zooplankton), Alekseev, V.R. and Tsalolikhina, S.Ya., Eds., Moscow: KMK, 2010.

  26. Pavlyuk, T.E., Using the trophic structure of benthic invertebrate communities to assess the ecological state of watercourses, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Sverdlovsk, 1998.

  27. Rukovodstvo po metodam gidrobiologicheskogo analiza poverkhnostnykh vod i donnykh otlozhenii (Guidelines to Methods of Hydrobiological Analysis of Surface Water and Bed Silt), Leningrad: Gidrometeoizdat, 1983.

  28. Opredelitel' presnovodnykh bespozvonochnykh Rossii i sopredel’nykh territorii (Key to Freshwater Invertebrates of Russia and Adjacent Territories), St. Petersburg: Nauka, 1994–2005, vols. 1–6.

  29. Lenat, D.R., Using aquatic insects to monitor water quality, Aquatic Insects of China Useful for Monitoring Water Quality, Nanjing: Hohai Univ. Press, 1994, pp. 68–91.

    Google Scholar 

  30. Petlina, A.P. and Romanov, V.I., Izuchenie molodi presnovodnykh ryb Sibiri (Study of juvenile freshwater fish in Siberia), Tomsk: Tomsk. Univ., 2004.

  31. Metodicheskie ukazaniya po sboru i obrabotke ikhtiologicheskogo materiala (Guidelines for the Collection and Processing of Ichthyological Material), Leningrad: Promrybvod, 1986.

  32. Pallant, J., SPSS survival manual. A Step by Step Guide to Data Analysis using SPSS for Windows, Maidenhead: Open University Press, 2007.

    Google Scholar 

  33. Gidrologiya zabolochennykh territorii zony mnogoletnei merzloty Zapadnoi Sibiri (Hydrology of Wetlands for Permafrost Area of Western Siberia) Novikov, S.M., Ed., St. Petersburg: VVM, 2009.

    Google Scholar 

  34. Newcombe, C.P. and MacDonald, D.D., Effects of suspended sediments on aquatic ecosystems, North Am. J. Fish. Manage., 1991, vol. 11, no. 1, pp. 72–82. https://doi.org/10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2

    Article  Google Scholar 

  35. Chalov, S.R., Esin, E.V., and Leman, V.N., Influence of suspended fluvial sediments on the river ichthyocene, Izv. Tikhookean. Nauchno-Issled. Rybokhoz. Tsentra, 2019, vol. 199, pp. 179–192. https://doi.org/10.26428/1606-9919-2019-199-179-192

    Article  Google Scholar 

  36. Chalov, S.R. and Leman, V.N., Regional approach to fishery normalization of suspended matter content, Vodn. Khoz. Ross.: Probl. Tekh. Upr., 2019, no. 6, pp. 66–83. https://doi.org/10.35567/1999-4508-2019-6-5

  37. Bilotta, G.S. and Brazier, R.E., Understanding the influence of suspended solids on water quality and aquatic biota, Water Res., 2008, vol. 42, no. 12, pp. 2849–2861. https://doi.org/10.1016/j.watres.2008.03.018

    Article  CAS  PubMed  Google Scholar 

  38. Bogdanov, V.D., Bogdanova, E.N., Mel’nichenko, I.P., et al., Problems of the protection of bioresources development of the Bovanenkovo gas condensate field, Ekon. Reg., 2012, no. 4, pp. 68–79.

  39. Adekunbi, F.O., Elegbede, I.O., Akhiromen, D.I., et al., Impact of sand dredging activities on ecosystem and community survival in Ibeshe area of Lagos Lagoon, Nigeria, J. Geosci. Environ. Protect., 2018, vol. 6, no. 2, pp. 112–125. https://doi.org/10.4236/gep.2018.62008

    Article  Google Scholar 

  40. Zou, W., Tolonen, K.T., Zhu, G., et al., Catastrophic effects of sand mining on macroinvertebrates in a large shallow lake with implications for management, Sci. Total Environ., 2019, vol. 695, art. ID 133706. https://doi.org/10.1016/j.scitotenv.2019.133706

    Article  CAS  PubMed  Google Scholar 

  41. Genkal, S.I. and Yarushina, M.I., Materials on the flora of Bacillariophyta in aquatic ecosystems of the Yarayakha River Basin (Yamal Peninsula), Contemp. Probl. Ecol., 2016, vol. 9, no. 3, pp. 306–317. https://doi.org/10.1134/S1995425516030045

    Article  Google Scholar 

  42. Genkal, S.I. and Yarushina, M.I., Flora of Bacillariophyta in the plankton of tundra ecosystems in the exploration area of the gas condensate field (Yamal Peninsula), Inland Water Biol., 2019, vol. 12, no. 4, pp. 373–383. https://doi.org/10/1134|S1995082919040047

    Article  Google Scholar 

  43. Lévesque, L.M. and Dubé, M.G., Review of the effects of in–stream pipeline crossing construction on aquatic ecosystems and examination of Canadian methodologies for impact assessment, Environ. Monit. Assess., 2007, vol. 132, nos. 1–3, pp. 395–409. https://doi.org/10.1007/s10661–006–9542–9

    Article  Google Scholar 

  44. Crosa, G., Castelli, E., Gentili, G., et al., Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an alpine stream, Aquat. Sci., 2010, vol. 72, no. 1, pp. 85–95. https://doi.org/10.1007/s00027–009–0117–z

    Article  CAS  Google Scholar 

  45. Yu, X., Wang, G., Zou, Y., et al., Effects of pipeline construction on Wetland Ecosystems: Russia–China oil pipeline project (Mohe–Daqing Section), AMBIO, 2010, vol. 39, nos. 5–6, pp. 447–450. https://doi.org/10.1007/s13280–010–0055–y

    Article  Google Scholar 

  46. Larsen, S., Pace, G., and Ormerod, S.J., Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams, River Res. Appl., 2011, vol. 27, pp. 257–267. https://doi.org/10.1002/rra.1361

    Article  Google Scholar 

  47. Cocchiglia, L., Purcell, P.J., and Kelly-Quinn, M., A critical review of the effects of motorway river-crossing construction on the aquatic environment, Freshwater Rev., 2012, vol. 5, pp. 141–168. https://doi.org/10.1608/FRJ–5.2.489

    Article  Google Scholar 

  48. Jones, J.I., Murphy, J.F., Collins, A.L., et al., The impact of fine sediment on macro-invertebrates, River Res. Appl., 2012, vol. 28, no. 8, pp. 1055–1071. https://doi.org/10.1002/rra.1516

    Article  Google Scholar 

  49. Burdon, F.J., McIntosh, A.R., and Harding, J., Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams, Ecol. Appl., 2013, vol. 23, no. 5, pp. 1036–1047. https://doi.org/10.1890/12–1190.1

    Article  Google Scholar 

  50. Elbrecht, V., Beermann, A.B., Goessler, G., et al., Multiple-stressor effects on stream invertebrates: a mesocosm experiment manipulating nutrients, fine sediment and flow velocity, Freshwater Biol., 2016, vol. 61, no. 4, pp. 362–375. https://doi.org/10.1111/fwb.12713

    Article  Google Scholar 

  51. Phillips, I.D., Davies, J.-M., Bowman, M.F., et al., Macroinvertebrate communities in a Northern Great Plains river are strongly shaped by naturally occurring suspended sediments: implications for ecosystem health assessment, Freshwater Sci., 2016, vol. 35, no. 4, pp. 1354–1364. https://doi.org/10.1086/689013

    Article  Google Scholar 

  52. Vvedenskaya, T.L. and Ulatov, A.V., Anthropogenic impact on salmon watercourses during the construction and operation of the main gas pipeline (Kamchatka), Vestn. Kamchatskogo Tekh. Univ., 2018, no. 46, pp. 53–65. https://doi.org/10.17217/2079-0333-2018-46-53-65

  53. Stepanov, L.N. and Pavlyuk, T.E., Benthic fauna shifts downstream from alluvial gold mine: a case study in a Subpolar Urals river, J. Fish. Aquat. Sci., 2019, vol. 14, no. 1, pp. 15–24. https://doi.org/10.3923/jfas.2019.15.24

    Article  Google Scholar 

  54. Gál, B.,Weiperth, A., Farkas, J., et al., The effects of road crossings on stream macro-invertebrate diversity, Biodivercity Conserv., 2020, vol. 29, no. 3, pp. 729–745. https://doi.org/10.1007/s10531–019–01907–4

    Article  Google Scholar 

  55. Methodology for assessing harm and calculating the amount of damage from the destruction of wildlife and violation of their habitat. Approved by the State Committee for Ecology of Russia on April 28, 2000. https://docs.cntd.ru/document/901784689. Cited February 9, 2022.

  56. Extence, C.A., Chadd, R.P., England, J., et al., The assessment of fine sediment accumulation in rivers using macro-invertebrate community response, River Res. Appl., 2013, vol. 29, pp. 17–55. https://doi.org/10.1002/rra.1569

    Article  Google Scholar 

  57. Kolejko, M., Sender, J., and Demetraki–Paleolog, A., Meristic and biometric features of lake minnow Eupallasella percnurus (Pallas, 1814) in small peat excavation (Jelino, Polesie Lubelskie region), Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego, 2014, vol. 11, pp. 70–76.

    Google Scholar 

  58. Lin, Q., Xu, L., Hou, J., et al., Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming, Water Res., 2017, vol. 124, pp. 618–629. https://doi.org/10.1016/j.watres.2017.07.078

    Article  CAS  PubMed  Google Scholar 

  59. Golubkov, S.M., Shadrin, N.V., Golubkov, M.S., et al., Food chains and their dynamics in ecosystems of shallow lakes with different water salinities, Russ. J. Ecol., 2018, vol. 49, no. 5, pp. 442–448. https://doi.org/10.1134/S1067413618050053

    Article  CAS  Google Scholar 

  60. Han, P., Becker, C., Sentis, A., et al., Global change–driven modulation of bottom–up forces and cascading effects on biocontrol services, Curr. Opin. Insect., 2019, vol. 35, pp. 27–33. https://doi.org/10.1016/j.cois.2019.05.005

    Article  Google Scholar 

  61. Su, H., Feng, Y., Chen, J., et al., Determinants of trophic cascade strength in freshwater ecosystems: a global analysis, Ecology, 2021, vol. 102, no. 7, art. ID e03370. https://doi.org/10.1002/ecy.3370

    Article  PubMed  Google Scholar 

  62. Ripple W.J., Estes J.A., Schmitz O.J., et al., What is a Trophic Cascade?, Trends Ecol. Evol., 2022, vol. 31, no. 11, pp. 842–849. https://trophiccascades.forestry. oregonstate.edu/sites/trophic/files/Ripple2016_TREE.pdf. Cited February 18, 2022. https://doi.org/10.1016/j.tree.2016.08.010

  63. Henley, W.F., Patterson, M.A., Neves, R.J., et al., Effects of sedimentation and turbidity on lotic food webs: A concise review for natural resource managers, Rev. Fish. Sci., 2000, vol. 8, no. 2, pp. 125–139. https://doi.org/10.1080/10641260091129198

    Article  Google Scholar 

  64. Heath, M.R., Speirs, D.C., and Steele, J.H., Understanding patterns and processes in models of trophiccascades, Ecol. Lett., 2014, vol. 17, no. 1, pp. 101–114. https://doi.org/10.1111/ele.12200

    Article  PubMed  Google Scholar 

  65. Frau, D., Battauz, Y., Alvarenga, P.F., et al., Assessing the relevance of top–down and bottom-up effects as phytoplankton structure drivers in a subtropical hypereutrophic shallow lake, Aquat. Ecol., 2019, vol. 53, no. 2, pp. 265–280. https://doi.org/10.1007/s10452–019–09687–3

    Article  CAS  Google Scholar 

  66. Lunt, J. and Smee, D.L., Turbidity alters estuarine biodiversity and species composition, ICES J. Mar. Sci., 2020, vol. 77, no. 1, pp. 379–387. https://doi.org/10.1093/icesjms/fsz214

    Article  Google Scholar 

  67. Bhele, U., Öğlü, B., Feldmann, T., et al., Modelling how bottom-up and top–down processes control the major functional groups of biota in a large temperate shallow lake, Inland Waters, 2022. https://www.tandfonline.com/ doi/full/https://doi.org/10.1080/20442041.2022.2031813. Cited February 20, 2022. 10.1080/20442041.2022.2031813

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.N. Bogdanova for her help in identifying and processing data on zooplankton.

Funding

The study was carried out within the framework of the State Assignment, The State and Dynamics of Bioresources of the Animal World of the Ural Region, The Development of Scientific Foundations for its Monitoring and Protection, No. 122021000084, of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Koporikov.

Ethics declarations

Conflict of Interest

The authors declare that they do not have a conflict of interest.

Statement of the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koporikov, A.R., Stepanov, L.N., Yarushina, M.I. et al. Impact of the Development of Hydrocarbon Deposits on Water Ecosystems of the Yamal Peninsula. Russ J Ecol 53, 239–252 (2022). https://doi.org/10.1134/S106741362204004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106741362204004X

Keywords:

Navigation