Skip to main content
Log in

Tritium from the Molecule to the Biosphere. 1. Patterns of Its Behavior in the Environment

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The beta-emitter tritium (3H, the half-life is 12.32 ± 0.02 years) contained in the environment has a natural and technogenic origin. The equilibrium global content of natural tritium is estimated at (1.0–2.6) × 1018 Bq. The total activity of technogenic tritium that was formed as a result of nuclear and thermonuclear weapon tests in 1945–1975 and during the normal and emergency operation of nuclear fuel cycle enterprises reaches 1020 Bq. Anthropogenic tritium serves as a unique marker for generalizing data on the behavior of this radionuclide in different environmental components. This is especially important in view of the intensification of research and development works in the field of controlled thermonuclear fusion in recent years. Promi-sing fusion power reactors, in which it is planned to use a significant amount of 3H as fuel, can become an additional source of impact on the biosphere. Their safety should be assessed, justified, and ultimately ensured based on proper technology and infrastructure. We have analyzed the dynamics of the number of publications on 3H over the period from 1951 to 2021 from the Google Scholar and Clarivate Analytics databases. The main characteristics and chemical forms of tritium are given. The methodology for assessing the content of different forms of 3H in environmental components is given taking into account interlaboratory intercalibration. Pathways of tritium entry into the environment (atmosphere and aquatic and terrestrial ecosystems) as a result of routine and emergency releases and discharges from nuclear industry enterprises are analyzed. Seasonal fluctuations in tritium activity with the maximum level in spring, as well as the effect of climatic factors and distance from the emission source on the spatial distribution of 3H, are shown. The role of soil organic acids in the behavior of tritium in ecosystems is noted. Based on the concept of reference plant and animal species, we have analyzed publications to assess the accumulation of different forms of 3H by biota during laboratory experiments and monitoring studies of natural ecosystems. A number of topical issues that need to be addressed in the near future have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sources, effects and risks of ionizing radiation. Report 2016, New-York: UNSCEAR, 2017.

  2. Management of waste containing tritium and carbon-14, Vienna: IAEA, 2004.

  3. Bartels, J.R., Pate, M.B., and Olson, N.K., An economic survey of hydrogen production from conventional and alternative energy sources, Int. J. Hydrogen Energy, 2010, vol. 35, no. 16, pp. 8371–8384.

    Article  CAS  Google Scholar 

  4. Dresselhaus, M.S. and Thomas, I.L., Alternative energy technologies, Nature, 2001, vol. 414, no. 6861, pp. 332–337.

    Article  CAS  PubMed  Google Scholar 

  5. Michaelides, E.E.S., Alternative Energy Sources, Berlin: Springer-Verlag, 2012.

    Book  Google Scholar 

  6. Reinders, L., The Fairy Tale of Nuclear Fusion, Cham: Springer-Verlag, 2021.

    Book  Google Scholar 

  7. Yukhimchuk, A.A., Tritium-related activities in the Russian Federation, Fusion Sci. Technol., 2020, vol. 76, no. 4, pp. 567–577.

    Article  Google Scholar 

  8. Zhang, H.W., Lin, X., Ma, Z.W., et al., Systematic simu-lation studies on the penetration of resonant magnetic perturbations in an Experimental Advanced Superconducting Tokamak, Plasma Phys. Controlled Fusion, 2021, vol. 63, no. 3, art. ID 035011.

  9. Kurskiev, G.S., Gusev, V.K., Sakharov, N.V., et al., Tenfold increase in the fusion triple product caused by doubling of toroidal magnetic field in the spherical tokamak Globus-M2, Nucl. Fusion, 2021, vol. 61, no. 6, art. ID 064001.

    Article  CAS  Google Scholar 

  10. Subbotin, M., Rozenkevich, M., Gostev, A., et al., Concept design of the tritium plant on the TRINITI site for the Tokamak Ignitor Project Tasks, Fusion Sci. Technol., 2020, vol. 76, no. 3, pp. 297–303.

    Article  Google Scholar 

  11. Rozenkevich, M., Perevezentsev, A., Subbotin, M., et al., Optimisation of fuel cycle for IGNITOR tokamak at TRINITI in Russia: A critical review, Int. J. Hydrogen Energy, 2020, vol. 45, no. 56, pp. 32311–32319.

    Article  CAS  Google Scholar 

  12. Petrov, M.P., Afanasyev, V.I., Chernyshev, F.V., et al., 60 Years of neutral particle analysis: from early tokamaks to ITER, Eur. Phys. J. H., 2021, vol. 46, no. 1, art. ID 5.

    Article  Google Scholar 

  13. Linge, I.I., On the radioecological consecuences of the closure of the nuclear fuel cycle, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2021, vol. 44, no. 1, pp. 13–17.

    Google Scholar 

  14. Urey, H.C., Murphy, G.M., and Brickwedde, F.G., A name and symbol for H2*, J. Chem. Phys., 1933, vol. 1, no. 7, pp. 512–513.

    Article  CAS  Google Scholar 

  15. Oliphant, M.L.E., Kinsey, B.B., and Rutherford, E., The transmutation of lithium by protons and by ions of the heavy isotope of hydrogen, Proc. R. Soc. London, Ser. A, 1933, vol. 141, no. 845, pp. 722–733.

    Article  CAS  Google Scholar 

  16. Alvarez, L.W. and Cornog, R., Helium and hydrogen of mass 3, Phys. Rev., 1939, vol. 56, no. 6, art. ID 613.

    Article  CAS  Google Scholar 

  17. Audi, G., Wapstra, A.H., and Thibault, C., The Ame2003 atomic mass evaluation: (II). Tables, graphs and references, Nucl. Phys. A., 2003, vol. 729, no. 1, pp. 337–676.

    Article  CAS  Google Scholar 

  18. Okada S. and Momoshima, N., Overview of tritium: characteristics, sources, and problems, Health Phys., 1993, vol. 65, no. 6, pp. 595–609.

    Article  CAS  PubMed  Google Scholar 

  19. Lucas, L.L. and Unterweger, M.P., Comprehensive review and critical evaluation of the half-life of tritium, J. Res. Natl. Inst. Stand. Technol., 2000, vol. 105, no. 4, pp. 541–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zerriffi, H., Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy’s decision to produce tritium, Takoma Park: IEER, 1996.

  21. Buchachenko, A.L. and Pliss, E.M., Isotope effects of hydrogen and atom tunnelling, Usp. Khim., 2016, vol. 85, no. 6, pp. 557–564.

    Article  CAS  Google Scholar 

  22. Mariyanats, A.O., Shestakov, I.A., Gorshkova, O.S., et al., Thermodynamic isotope effects of tritium in hydroxyl and carboxyl group, Vopr. Radiats. Bezop., 2017, no. 1, pp. 80–87.

  23. Investigation of the environmental fate of tritium in the atmosphere. Part of the Tritium Studies Project, Ottawa: CCNS, 2009.

  24. Kaufman, S. and Libby, W.F., The natural distribution of tritium, Phys. Rev., 1954, vol. 93, no. 6, pp. 1337–1344.

    Article  CAS  Google Scholar 

  25. Kessler, G., Yadernaya energetika (Nuclear Energy), Moscow: Energoatomizdat, 1986.

  26. Ionizing radiation: sources and biological effects, New York: UNSCEAR, 1982.

  27. Begemann, F. and Libby, W.F., Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium, Geochim. Cosmochim. Acta, 1957, vol. 12, no. 4, pp. 277–296.

    Article  CAS  Google Scholar 

  28. Bazhenov, V.A., Buldakov, L.A., Vasilenko, I.Ya., et al., Vrednye khimicheskie veshchestva. Radioaktivnye veshchestva: spravochnik (Harmful Chemicals. Radioactive Substances: Handbook), Filov, V.A., Ivin, B.A., and Il’in, L.A., Eds., Leningrad: Khimiya, 1990.

  29. Kalinowski, M.B., International Control of Tritium for Nuclear Nonproliferation and Disarmament, Boca Raton: CRC press, 2004.

    Book  Google Scholar 

  30. Phillips, J.E. and Easterly, C.E., Sources of Tritium, Oak Ridge Natl. Lab., 1980.

    Book  Google Scholar 

  31. Desyatov, D.D. and Ekidin, A.A., Valuation of tritium’s entry into the environment from nuclear power plants' emissions, Biosfernaya Sovmestimost: Chel., Reg., Tekhnol., 2018, no. 1, pp. 88–96.

  32. Mikhal’chenko, A.G., Ivakhnyuk, G.K., and Shvetsova, O.V., Prospects for increasing the global radiation load from technogenic tritium, Tezisy dokladov XIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsiiSovremennye problemy ekologii” (Proc. XIV Int. Sci.-Tech. Conf. “Modern Problems of Ecology”), Panarin, V.M., Ed., Tula: Innovats. Technol., 2016, pp. 263–264.

  33. Environmental Health Criteria 25. Selected Radionuclides – Tritium, Carbon-14, Krypton-85, Strontium-90, Iodine, Caesium-137, Radon, Plutonium, Geneva: WHO, 1983.

  34. Mironova, N.I., Tritii - eto opasno (Tritium is Dangerous), Chelyabinsk: Dvizhenie za yadernuyu bezopasnost', Tsentr podderzhki grazhdanskikh initsiativ, 2001.

  35. Murphy, C.E. Jr. and Pendergast, M.M., Environmental Transport and Cycling of Tritium in the Vicinity of Atmospheric Releases, Vienna: IAEA, 1979.

    Google Scholar 

  36. Radiatsionnaya obstanovka na territorii Rossii i sopredel’nykh gosudarstv v 2020 godu (Radiation Situation on the Territory of Russia and Neighboring States in 2020), Shershakov, V.M., Bulgakov, V.G., and Kryshev, I.I., Eds., Obninsk: Rosgidromet, Nauchno-Proizvod. Ob’edin. “Taifun”, 2021.

  37. Willms, S., Tritium supply considerations, 2003. https://fire.pppl.gov/fesac_dp_ts_willms.pdf.

  38. Pastor, L., Siclet, F., Peron, O., et al., Experimental Setup for the Determination of Exchangeable Hydrogen in Environmental Samples using Deuterium and Tritium, Barcelona: ICRER, 2014.

    Google Scholar 

  39. Bondarenko, L., Izotova, A., Bolshakov, V., et al., Tritium, Tritium, Tritium (HTO, TFWT, OBT), St. Peterburg: Radievyi Inst. im. V.G. Khlopina, 2016.

  40. Chen, J., Radiation quality of tritium, Radiat. Prot. Dosim., 2006, vol. 122, no. 1–4, pp. 546–548.

    Article  Google Scholar 

  41. Kim, S.B., Baglan, N., and Davis, P.A., Current understanding of organically bound tritium (OBT) in the environment, J. Environ. Radioact., 2013, vol. 126, pp. 83–91.

    Article  CAS  PubMed  Google Scholar 

  42. Adam-Guillermin, C., Pereira, S., Della-Vedova, C., et al., Genotoxic and reprotoxic effects of tritium and external gamma irradiation on aquatic animals, vol. 220 of Reviews of Environmental Contamination and Toxicology, Whitacre, D.M., Ed., New-York: Springer-Verlag, 2012, pp. 67–103.

  43. Eyrolle F., Ducros L., Le Dizès, S., et al., An updated review on tritium in the environment, J. Environ. Radioact., 2018, vol. 181, pp. 128–137.

    Article  CAS  PubMed  Google Scholar 

  44. Jean-Baptiste, P., Fourré, E., Baumier, D., et al., Environmental OBT/TFWT ratios revisited, Fusion Sci. Technol., 2011, vol. 60, no. 4, pp. 1248–1251.

    Article  CAS  Google Scholar 

  45. Mathur-De Vré, R. and Binet, J., Molecular aspects of tritiated water and natural water in radiation biology, Prog. Biophys. Mol. Biol., 1984, vol. 43, no. 2, pp. 161–193.

    Article  PubMed  Google Scholar 

  46. Mazheika, I.V., Pyatroshyus, R.I., Skuratovich, Zh.L., et al., Tritium in the environment of the Ignalina Nuclear Power Plant during its operational period, Reg. Ekol., 2018, no. 1, pp. 20–30.

  47. Baglan, N., Ansoborlo, E., Cossonnet, C., et al., Tritium metrology within different media: focus on organically bound tritium (OBT), Radioprotection, 2010, vol. 45, no. 3, pp. 369–390.

    Article  CAS  Google Scholar 

  48. Budnitz, R.J., Tritium instrumentation for environmental and occupational monitoring – a review, Health Phys., 1974, vol. 26, no. 2, pp. 165–178.

    Article  CAS  PubMed  Google Scholar 

  49. Clarke, W.B., Jenkins, W.J., and Top, Z., Determination of tritium by mass spectrometric measurement of 3He, Int. J. Appl. Radiat. Isot., 1976, vol. 27, no. 9, pp. 515–522.

    Article  CAS  Google Scholar 

  50. Dodi, E. and Benco, A., Radiation protection — tritium instrumentation and monitoring methods, safety in tritium handling technology, vol. 1 of Eurocourses: Nuclear Science and Technology, Mannone, F., Ed., Dordecht: Springer-Verlag, 1993, pp. 145–159.

  51. Fitchet, P., Bultel, A., Markelj, S., et al., Review of the different techniques to analyse tritium, CEA, 2017.

    Google Scholar 

  52. Hara, M., Kawamura, Y., and Tanabe, T., Tritium measurement. I –Tritium in gas, liquid, and solid, in Tritium: Fuel of Fusion Reactors, Tanabe, T., Ed., Tokyo: Springer-Verlag, 2017, pp. 137–164.

    Google Scholar 

  53. Love, A.H., Hunt, J.R., Roberts, M.L., et al., Use of tritium accelerator mass spectrometry for tree ring analysis, Environ. Sci. Technol., 2002, vol. 36, no. 13, pp. 2848–2852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sakuma, Y., Yamanishi, H., Ogata, Y., et al., Development of a Simplified Method for Tritium Measurement in the Environmental Water, Toki: Natl. Inst. Fusion Sci., 2002.

    Google Scholar 

  55. Zushi, H., Tritium Measurement. II –Tritium in plasma, in Tritium: Fuel of Fusion Reactors, Tanabe, T., Ed., Tokyo: Springer-Verlag, 2017, pp. 165–205.

    Google Scholar 

  56. NF M60-824, Nuclear energy – measurement of radioactivity in the environment – determination of tritium activity in the environment – test method for analysis of tritium in free water and organically bound tritium in environmental matrices, 2020.

  57. Ware, A. and Allott, R., Review of Methods for The Analy-sis of Total Tritium and Organically Bound Tritium, Bristol: Environ. Agency, 1999.

    Google Scholar 

  58. Faizrakhmanov, F.F., Anikin, A.Ya., Antonenko, G.I., et al., Izmerenie malykh udel’nykh aktivnostei tritiya (Measurement of Small Specific Activities of Tritium), Romanov, S.A., Ed., Snezhinsk: Vseross. Nauchno-Issled. Inst. Tekh. Fisiki, 2014.

    Google Scholar 

  59. Pointurier, F., Baglan, N., and Alanic, G., A method for the determination of low-level organic-bound tritium activities in environmental samples, Appl. Radiat. Isot., 2004, vol. 61, nos. 1–2, pp. 293–298.

    Article  CAS  PubMed  Google Scholar 

  60. Goryachev, V.A., Rogachev, K.A., and Soifer, V.N., Tritium migration in warm Kuroshio vortices, Okeano-logiya, 1991, vol. 31, no. 4, pp. 599–605.

    CAS  Google Scholar 

  61. Connan, O., Hébert, D., Solier, L., et al., Atmospheric tritium concentrations under influence of AREVA NC La Hague reprocessing plant (France) and background levels, J. Environ. Radioact., 2017. vol. 177, pp. 184–193.

    Article  CAS  PubMed  Google Scholar 

  62. Vasyanovich, M.E., Ekidin, A.A., Vasilyev, A.V., et al., Determination of radionuclide composition of the Russian NPPs atmospheric releases and dose assessment to population, J. Environ. Radioact., 2019, vol. 208–209, art. ID 106006.

    Article  PubMed  CAS  Google Scholar 

  63. Tentative method of analysis for tritium content of the atmosphere. Method 609, in Methods of Air Sampling and Analysis, New-York: Am. Public Health Assoc., 1977.

  64. Bukin, A.N., Ivanova, A.S., Rozenkevich, M.B., et al., Method of sampling tritiated vapors from gas phase using phase isotopic exchange method, Zavod. Lab., Diagn. Mater., 2017, vol. 83, no. 7, pp. 27–31.

    CAS  Google Scholar 

  65. Bukin, A.N., Marunich, S.A., Moseeva, V.S., et al., RF Patent 2711576 C1, 2020.

  66. Doe Handbook: Tritium Handling and Safe Storage, Washington: U.S. Department of Energy, 2007.

  67. Tarancón, A., Bagán, H., and García, J.F., Plastic scintillators and related analytical procedures for radionuclide analysis, J. Radioanal. Nucl. Chem., 2017, vol. 314, no. 2, pp. 555–572.

    Article  CAS  Google Scholar 

  68. Buzinny, M., Panasjuk, N., and Tsygankov, N., LSC-based approach for water analyses around the Chernobyl NPP, in Advances In Liquid Scintillation Spectrometry (Lsc 2005), Chalupnik, S., Schönhofer, F., and Noakes, J., Eds., Katowice: University of Arizona, 2006, pp. 297–303.

    Google Scholar 

  69. Zhuravkov, V.V., Poznyak, S.S., and Skibinskaya, A.N., Monitoring the tritium concentrationin the hydrographic network of the Belarusian NPP construction area, Zh. Beloruss. Gos. Univ., Ekologiya, 2019, no. 1, pp. 18–23.

  70. Pourcelot, L., Vintró, L.L., Mitchell, P., et al., Hydrological behaviour of tritium on the former Semipalatinsk nuclear test site (Kazakhstan) determined using stable isotope measurements, Eurasian Chem.-Technol. J., 2013, vol. 15, no. 4, pp. 293–299.

    Google Scholar 

  71. Fons, J., Tent-Petrus, J., and Llauradó, M., Strategy for the determination of mixtures of alpha and beta emitters in water samples with a combination of rapid methods, J. Radioanal. Nucl. Chem., 2017, vol. 314, pp. 797–802.

    Article  CAS  Google Scholar 

  72. Pujol, L. and Sanchez-Cabeza, J.A., Use of tritium to predict soluble pollutants transport in Ebro River waters (Spain), Environ. Pollut., 2000, vol. 108, no. 2, pp. 257–269.

    Article  CAS  PubMed  Google Scholar 

  73. Jefanova, O., Mažeika, J., Petrošius, R., et al., The distribution of tritium in aquatic environments, Lithuania, J. Environ. Radioact., 2018, vol. 188, pp. 11–17.

    Article  CAS  PubMed  Google Scholar 

  74. Janković, M.M., Janković, B.Ž., Todorović, D.J., et al., Tritium concentration analysis in atmospheric precipitation in Serbia, J. Environ. Sci. Health, Part A, 2012, vol. 47, no. 5, pp. 669–674.

    Google Scholar 

  75. Grahek, Ž., Breznik, B., Stojković, I., et al., Measurement of tritium in the Sava and Danube Rivers, J. Environ. Radioact., 2016, vol. 162–163, pp. 56–67.

    Article  PubMed  CAS  Google Scholar 

  76. Leo, W.R., Techniques for Nuclear and Particle Phy-sics Experiments: A How-To Approach, Berlin: Sprin-ger-Verlag, 1994.

    Book  Google Scholar 

  77. Pujol, L. and Sanchez-Cabeza, J.A., Optimisation of liquid scintillation counting conditions for rapid tritium determination in aqueous samples, J. Radioanal. Nucl. Chem., 1999, vol. 242, no. 2, pp. 391–398.

    Article  CAS  Google Scholar 

  78. Stojković, I., Todorović, N., Nikolov, J. et al., Metho-dology of tritium determination in aqueous samples by liquid scintillation counting techniques, in Tritium: Advances in Research and Applications, Janković, M.M., Ed., New-York: Nova Science Publishers, 2018, pp. 99–156.

  79. Janković, M.M., Janković, B.Ž., and Sarap, N.B., A new method for the determination of tritium origina-ting in surface waters: symmetrical index application, in Tritium: Advances in Research and Applications, Janko-vić, M.M., Ed., New-York: Nova Science Publishers, 2018, pp. 213–250.

  80. Sadhukhan, R.K. and Synzynys, B.I., Review of tritium in Bangladesh before commissioning of NPP Rooppur, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 976, art. ID 012009.

  81. Kim, S.B., Bredlaw, M., Rousselle, H., et al., Distribution of organically bound tritium (OBT) activity concentrations in aquatic biota from eastern Canada, J. Environ. Radioact., 2019, vols. 208–209, art. ID 105997.

    Article  PubMed  CAS  Google Scholar 

  82. Clark, I., Wilk, M., and Lacelle, D., Environmental Fate of Tritium in Soil and Vegetation, Ottawa: Canadian Nuclear Safety Commission, 2010.

    Google Scholar 

  83. ISO 9698. Water quality – Tritium – Test Method using liquid Scintillation Counting, 2019.

  84. ISO 13168. Water Quality – Simultaneous Determination of Tritium and Carbon-14 Activities – Test Method using Liquid Scintillation Counting, 2015.

  85. Dogaru, M., Calin, M.A., and Stan-Sion, C., Tritium measurements by AMS and applications, J. Radioanal. Nucl. Chem., 2011, vol. 288, no. 2, pp. 491–498.

    Article  CAS  Google Scholar 

  86. Kulkova, M. and Davidochkina, A., Tritium in the environment of gulf of Finnland, Int. J. Chem. Eng. Appl., 2011, vol. 2, no. 1, pp. 8–11.

    CAS  Google Scholar 

  87. Nayak, S.R., D’Souza, R.S., Purushotham, M.M., et al., Determination of organically bound tritium (OBT) concentration in fish by thermal oxidation and liquid scintillation counting method, Health Phys., 2021, vol. 120, no. 1, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  88. Kim, M.A. and Baumgärtner, F., Validation of tritium measurements in biological materials, Fusion Technol., 1988, vol. 14, no. 2P2B, pp. 1153–1156.

  89. Baglan, N., Alanic, G., Le Meignen, R., et al., A follow up of the decrease of non exchangeable organically bound tritium levels in the surroundings of a nuclear research center, J. Environ. Radioact., 2011, vol. 102, no. 7, pp. 695–702.

    Article  CAS  PubMed  Google Scholar 

  90. Baglan, N., Kim, S.B., Cossonnet, C., et al., Organically bound tritium (OBT) behaviour and analysis: outcomes of the seminar held in Balaruc-les-Bains in May 2012, Radioprotection, 2013, vol. 48, no. 1, pp. 127–144.

    Article  CAS  Google Scholar 

  91. Baglan, N., Cossonnet, C., Roche, E., et al., Feedback of the third interlaboratory exercise organised on wheat in the framework of the OBT working group, J. Environ. Radioact., 2018, vol. 181, pp. 52–61.

    Article  CAS  PubMed  Google Scholar 

  92. Kim, S.-B. and Roche, J., Empirical insights and considerations for the OBT inter-laboratory comparison of environmental samples, J. Environ. Radioact., 2013, vol. 122, pp. 79–85.

    Article  CAS  PubMed  Google Scholar 

  93. Silin, I.I., Vaizer, V.I., and Momot, O.A., Tritium monitoring in groundwater near nuclear reactors, Razved. Okhr. Nedr, 2012, no. 7, pp. 50–52.

  94. Ekidin, A.A., Antonov, K.L., and Zhukovskii, M.V., Assessment of atmospheric pollution by tritium during water evaporation from the surface of industrial water bodies, Vopr. Radiats. Bezop., 2012, no. 3, pp. 3–10.

  95. Ekidin, A.A., Vasil’ev, A.V., Vasyanovich, M.E., et al., Analysis of the possibility of admission of tritium into the atmosphere from distillate storage tanks (on the example of the Balakovo NPP), Vopr. Radiats. Bezop., 2019, no. 1, pp. 16–24.

  96. Ekidin, A.A., Antonov, K.L., Vasil’ev, A.V., et al., Assessment of admission of tritium into the atmosphere from spray cooling ponds by Balakovo NPP in cold period of time, YadRadiats. Bezop., 2017, no. 3, pp. 35–46.

  97. Lyakhova, O.N., Lukashenko, S.N., Larionova, N.V., et al., Comparative assessment of the main sources of admission of tritium into the atmosphere on the territory of the Semipalatinsk test site, Radiats. Risk, 2014, vol. 23, no. 3, pp. 43–56.

    Google Scholar 

  98. Lyakhova, O.N., Lukashenko, S.N., Timonova, L.V., et al., Evaluation of the concentration of gaseous compound of tritium in places of nuclear tests at the Semipalatinsk test site, Radiats. Biol., Radioekol., 2020, vol. 60, no. 6, pp. 649–660.

    Google Scholar 

  99. Renard, H., Connan, O., Le Dizes, S., et al., Experimental measurements of the bacterial oxidation of HT in soils: Impact over a zone influenced by an industrial release of tritium in HT form, J. Environ. Radioact., 2022, vol. 242, art. ID 106779.

    Article  CAS  PubMed  Google Scholar 

  100. Lyakhova, O., Lukashenko, S., Larionova, N., et al., Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site, J. Environ. Radioact., 2012, vol. 113, pp. 98–107.

    Article  CAS  PubMed  Google Scholar 

  101. Okai, T., Momoshima, N., and Takashima, Y., Variation of atmospheric tritium concentrations in three different chemical forms in Fukuoka, Japan, J. Radioanal. Nucl. Chem., 1999, vol. 239, no. 3, pp. 527–531.

    Article  CAS  Google Scholar 

  102. Momoshima, N., Yamaguchi, T., Toyoshima, T., et al., Tritium in the atmospheric environment, J. Nucl. Radiochem. Sci., 2007, vol. 8, no. 2, pp. 117–120.

    Article  CAS  Google Scholar 

  103. Maro, D., Vermorel, F., Rozet, M., et al., The VATO project: An original methodology to study the transfer of tritium as HT and HTO in grassland ecosystem, J. Environ. Radioact., 2017, vol. 167, pp. 235–248.

    Article  CAS  PubMed  Google Scholar 

  104. Simionov, V. and Duliu, O., Atmospheric tritium dynamics around Cernavoda nuclear power plant, Rom. Rep. Phys., 2010, vol. 62, no. 4, pp. 827–837.

    CAS  Google Scholar 

  105. Annual report. Vienna: IAEA, 2021.

  106. Zhang, Y., Ye, S., and Wu, J., A modified global model for predicting the tritium distribution in precipitation, 1960–2005, Hydrol. Processes, 2011, vol. 25, no. 15, pp. 2379–2392.

    Article  CAS  Google Scholar 

  107. Connan, O., Maire, D., Hébert, D., et al., Tritium in precipitation on 5 sites in North-West France during the 2017–2019 period, J. Environ. Radioact., 2020, vol. 212, art. ID 106129.

    Article  CAS  PubMed  Google Scholar 

  108. Galeriu, D., Davis, P., and Workman, W., Tritium profiles in snowpacks, J. Environ. Radioact., 2010, vol. 101, no. 10, pp. 869–874.

    Article  CAS  PubMed  Google Scholar 

  109. Chae, J.-S., Lee, S.-K., Kim, Y., et al., Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant, Radiat. Prot. Dosim., 2011, vol. 146, no. 1–3, pp. 330–333.

    Article  CAS  Google Scholar 

  110. Harms, P.A., Visser, A., Moran, J.E., et al., Distribution of tritium in precipitation and surface water in California, J. Hydrol., 2016, vol. 534, pp. 63–72.

    Article  CAS  Google Scholar 

  111. Gusyev, M.A., Morgenstern, U., Nishihara, T., et al., Evaluating anthropogenic and environmental tritium effects using precipitation and Hokkaido snowpack at selected coastal locations in Asia, Sci. Total Environ., 2019, vol. 659, pp. 1307–1321.

    Article  CAS  PubMed  Google Scholar 

  112. Chae, J.-S. and Kim, G., Seasonal and spatial variations of tritium in precipitation in Northeast Asia (Korea) over the last 20 years, J. Hydrol., 2019, vol. 574, pp. 794–800.

    Article  CAS  Google Scholar 

  113. Michel, R.L., Jurgens, B.C., and Young, M.B., Tritium deposition in precipitation in the United States, 1953–2012, U.S. Geological Survey Scientific Investigations Report, 2018.

  114. Chae, J.-S. and Kim, G., Dispersion and removal characteristics of tritium originated from nuclear power plants in the atmosphere, J. Environ. Radioact., 2018, vol. 192, pp. 524–531.

    Article  CAS  PubMed  Google Scholar 

  115. Radiatsionnaya obstanovka na territorii Rossii i sopredel’nykh gosudarstv v 2019 godu (Radiation Situation in Russia and Neighboring States in 2019), Shershakov, V.M., Bulgakov, V.G., Kryshev, I.I., Eds., Obninsk: Rosgidromet, Nauchno-Proizvod. Ob’edin. “Taifun”, 2020.

  116. Makarov, V.N. and Torgovkin, N.V., Tritium in the snow cover of the river basin Vilyui, Prir. Resur. Arkt. Subarktiki, 2015, vol. 1, no. 77, pp. 50–55.

    Google Scholar 

  117. Ravoire, J., Lorius, C., Robert, J., et al., Tritium content in a firn core from Antarctica, J. Geophys. Res., 1970, vol. 75, no. 12, pp. 2331–2335.

    Article  Google Scholar 

  118. Makarov, V.N., Tritium: Advances in Research and Applications, Janković, M.M., Ed., New-York: Nova Science Publishers, 2018, pp. 33–46.

  119. Matsumoto, T., Maruoka, T., Shimoda, G., et al., Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi Nuclear Plant accident, Sci. Total Environ., 2013, vol. 445–446, pp. 365–370.

    Article  PubMed  CAS  Google Scholar 

  120. Rosenberg, B.L., Ball, J.E., Shozugawa, K., et al., Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 1: Depth profiles of radiocesium and strontium-90 in soil, Appl. Geochem., 2017, vol. 85, pp. 201–208.

    Article  CAS  Google Scholar 

  121. Koga, T., Morishima, H., Niwa, T., et al., Tritium precipitation in European cities and in Osaka, Japan owing to the Chernobyl nuclear accident, J. Radiat. Res., 1991, vol. 32, no. 3, pp. 267–276.

    Article  CAS  PubMed  Google Scholar 

  122. Salonen, L., Carbon-14 and tritium in air in Finland after the Chernobyl accident, Radiochim. Acta, 1987, vol. 41, no. 4, pp. 145–148.

    Article  CAS  Google Scholar 

  123. Florkowski, T., Kuc, T., and Rozanski, K., Influence of the Chernobyl accident on the natural levels of tritium and radiocarbon, Int. J. Radiat. Appl. Instrum., Part A, Appl. Radiat. Isot., 1988, vol. 39, no. 1, pp. 77–79.

    Article  CAS  Google Scholar 

  124. Krajcar-Bronic, I., Srdoc, D., Obelic, B., et al., Tritium activity in precipitation and in tap water of NW Yugoslavia after the Chernobyl accident, 4 European Congress and 13 Regional Congress of IRPA, Austria: IRPA, 1988, pp. 761–764.

  125. Chebotina, M.Ya., Nikolin, O.A., and Murashova, E.L., Effluence of tritium on the earth’s surface with rainfall, Vod. Khoz. Ross.: Probl., Tekhnol., Upr., 2012, no. 5, pp. 77–87.

  126. Chebotina, M.Ya., Nikolin, O.A., and Murashova, E.L., Tritium in rainfall in the area of location of FSUE “PA Mayak”, Vopr. Radiats. Bezop., 2009, no. 3, pp. 58–62.

  127. Chebotina, M.Ya. and Nikolin, O.A., Radioekologicheskie issledovaniya tritiya v Ural’skom regione (Radioecological Studies of Tritium in the Ural Region), Bol’shakov, V.N. and Vasil’ev, A.G., Eds., Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2005.

  128. Radiation safety standards (NRB-99/2009): Sanitary and epidemiological rules and regulations (SanPin 2.6.1.2523-09), Moscow: Federal. Tsentr Gig. Epidemiol. Rospotrebnadzora, 2009.

  129. Vostrotin, V.V., Yanov, A.Yu., and Finashov, L.V., Accumulation of tritium in the snow cover in the Mayak PA affected area during the autumn and winter season 2015-2016, Vopr. Radiats. Bezop., 2017, no. 3, pp. 63–67.

  130. Chebotina, M.Ya., Nikolin, O.A., and Smagin, A.I., Tritium in the snow cover in the affected areas of nuclear fuel cycle enterprises in the Urals, Vod. Khoz. Ross.: Probl., Tekhnol., Upr., 2014, no. 2, pp. 102–113.

  131. Kim, C.-K., Rho, B.-H., and Lee, K.J., Environmental tritium in the areas adjacent to Wolsong nuclear power plant, J. Environ. Radioact., 1998, vol. 41, no. 2, pp. 217–231.

    Article  Google Scholar 

  132. Liang, M., Ma, Y., Ni, S., et al., Analysis of tritium level around Qinshan NPP base, Radiat. Prot. (Taiyuan), 2009, vol. 29, no. 4, pp. 255–260.

    Google Scholar 

  133. Golubev, A.V., The behavior of tritium in the environment, Vestn. Mininsk. Univ. 2015, vol. 10, no. 2, pp. 1–7.

    Google Scholar 

  134. Izrael', Yu.A., Atlas Vostochno-Ural’skogo i Karachaevskogo radioaktivnykh sledov, vklyuchaya prognoz do 2047 goda (Atlas of the East Ural and Karachay radioactive traces, including a forecast up to 2047), Moscow: Inst. Global. Klimat. Ekol. Rosgidromet Ross. Akad. Nauk, Foundation “Infosfera” – NIA-Priroda, 2013.

  135. Hebert, D., Tritium in precipitation of Vostok (An-tarctica): conclusions on the tritium latitude effect, Isot. Environ. Health Stud., 2011, vol. 47, no. 3, pp. 265–272.

    Article  CAS  Google Scholar 

  136. Tadros, C.V., Hughes, C.E., Crawford, J., et al., Tritium in Australian precipitation: A 50 year record, J. Hydrol., 2014, vol. 513, pp. 262–273.

    Article  CAS  Google Scholar 

  137. Rozanski, K., Gonfiantini, R., and Araguas-Araguas, L., Tritium in the global atmosphere: distribution patterns and recent trends, J. Phys. G: Nucl. Part. Phys., 1991, vol. 17, pp. S523–S536.

    Article  Google Scholar 

  138. Fourré, E., Jean-Baptiste, P., Dapoigny, A., et al., Past and recent tritium levels in Arctic and Antarctic polar caps, Earth Planet. Sci. Lett., 2006, vol. 245, nos. 1–2, pp. 56–64.

    Article  CAS  Google Scholar 

  139. Viner, B.J. and Goodlove, S., Using a coupled dispersion model to estimate depletion of a tritium oxide plume by a forest, J. Environ. Radioact., 2020, vols. 220–221, art. ID 106316.

    Article  PubMed  CAS  Google Scholar 

  140. Davis, P.A., Tritium transfer parameters for the winter environment, J. Environ. Radioact., 1997, vol. 36, nos. 2–3, pp. 177–196.

    Article  CAS  Google Scholar 

  141. Koroleva, V.S., Shestakov, I.A., and Sazonov, A.B., Deuterium and tritium equilibrium in aqueous solutions of carbohydrates, Usp. Khim. Khim. Tekhnol., 2018, vol. 32, no. 9, pp. 21–23.

    Google Scholar 

  142. Fiévet, B., Pommier, J., Voiseux, C., et al., Transfer of tritium released into the marine environment by French nuclear facilities bordering the English Channel, Environ. Sci. Technol., 2013, vol. 47, no. 12, pp. 6696–6703.

    Article  PubMed  CAS  Google Scholar 

  143. Carsten, A.L., Tritium in the environment, in Advances in Radiation Biology, Lett, J.T., Adler, H., Eds., New-York: Academic Press, 1979, vol. 8, pp. 419–458.

  144. Inoue, Y. and Iwakura, T., Tritium concentration in japanese rice, J. Radiat. Res., 1990, vol. 31, no. 4, pp. 311–323.

    Article  CAS  PubMed  Google Scholar 

  145. Turner, A. and Millward, G.E., and Stemp, M., Distribution of tritium in estuarine waters: the role of organic matter, J. Environ. Radioact., 2009, vol. 100, no. 10, pp. 890–895.

    Article  CAS  PubMed  Google Scholar 

  146. Chebotina, M.Ya., Polyakov, E.V., and Guseva, V.P., The role of natural organic substances in the migration processes of tritium, Radiats. Biol. Radioekol., 2019, vol. 59, no. 5, pp. 546–552.

    Google Scholar 

  147. Jean-Baptiste, P., and Fourré, E., The distribution of tritium between water and suspended matter in a laboratory experiment exposing sediment to tritiated water, J. Environ. Radioact., 2013, vol. 116, pp. 193–196.

    Article  CAS  PubMed  Google Scholar 

  148. Pearson, H.B.C., Dallas, L.J., Comber, S.D.W., et al., Mixtures of tritiated water, zinc and dissolved organic carbon: Assessing interactive bioaccumulation and genotoxic effects in marine mussels, Mytilus galloprovincialis, J. Environ. Radioact., 2018, vol. 187, pp. 133–143.

    Article  CAS  PubMed  Google Scholar 

  149. Polyakov, E.V., Chebotina, M.Ya., Volkov, I.V., et al., RF Patent RU 2 680 507 C1, 2019.

  150. Vakulovskii, S.M. and Katrich, I.Yu., Tritium in water bodies in Russia in 1975–2012, ANRI, 2013, vol. 74, no. 3, pp. 38–42.

    Google Scholar 

  151. Chernogaeva, G.M., Zhuravleva, L.R., Peshkov, Yu.V., et al., Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2020 god (Review of the State and Pollution of the Environment in the Russian Federation for 2020), Chernogaeva, G.M., Ed., Moscow: Rosgidromet, 2021.

    Google Scholar 

  152. Chionov, V.G., Nosov, A.V., Kazakov, S.V., et al., Assesing the impact of NPP tritium discharges on the radiation state of water bodies, Meteorol. Gidrol., 2017, no. 5, pp. 98–104.

  153. Luneva, E.V., The content of radionuclides in surface waters, bottom sediments and hydrobionts of the Neman River, Biol. Vnutr. Vod, 2018, no. 1, pp. 100–106.

  154. Hanslík, E., Marešová, D., Juranová, E., et al., Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic, J. Environ. Manage., 2017, vol. 203, no. 3, pp. 1137–1142.

    Article  PubMed  CAS  Google Scholar 

  155. Kul’kova, M.A., Lebedev, S.V., Nesterov, E.M., et al., Radiocarbon and Tritium in Environment Water System of St. Petersburg Region, Izv. Ross. Gos. Pedagog. Univ. im. A. I. Gertsena, 2014, no. 165, pp. 93–97.

  156. Chebotina, M.Ya., Tritium in the Beloyarsk reservoir water during the period of the nuclear power station three blocks operation, Vod. Khoz. Ross.: Probl., Tekhnol., Upr., 2010, no. 4, pp. 58–73.

  157. Jean-Baptiste, P., Baumier, D., Fourré, E., et al., The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002–2005), J. Environ. Radioact., 2007, vol. 94, no. 2, pp. 107–118.

    Article  CAS  PubMed  Google Scholar 

  158. Chebotina, M.Ya., Trapeznikov, A.V., Trapeznikova, V.N., et al., Radioekologicheskie issledovaniya Beloyarskogo vodokhranilishcha (Radioecological Studies of the Beloyarsk Reservoir), Sverdlovsk: Ural. Otd. Ross. Akad. Nauk, 1992.

  159. Chebotina, M.Ya. and Nikolin, O.A., Tritium in the ecosystem of the NPP cooling pond, Ural. Geofiz. Vestn., 2003, no. 1, pp. 93–97.

  160. Nikolin, O.A., Tritium in water ecosystems of the Ural region, Extended Abstract of Cand. (Biol.) Sci. Dissertation, Perm, 2008.

  161. Brunella, R. and Raffaele, B., Tritium as a tool to assess leachate contamination: An example from Conversano landfill (Southern Italy), J. Geochem. Explor., 2022, art. ID 106939.

  162. Brezgunov, V.S. and Ferronskii V.I., Natural tritium as an indicator of the restructuring of the vertical structure of the water masses of the Caspian Sea with fluctuations in its level, Vodn. Resur., 2005, vol. 32, no. 4, pp. 406–409.

    Google Scholar 

  163. Stewart, M.K. and van der Raaij, R.W., Response of the Christchurch groundwater system to exploitation: Carbon-14 and tritium study revisited, Sci. Total Environ., 2022, vol. 817, art. ID 152730.

    Article  CAS  PubMed  Google Scholar 

  164. Bondareva, L., Tritium in the freshwater ecosystem of the Yenisei river: behavior, accumulation, and transformation, Tritium: Advance in Research and Application, Janković, M.M., Ed., New-York: Nova Science Publishers, 2018, pp. 47–98.

  165. Bolsunovsky, A.Y. and Bondareva, L.G., Tritium in surface waters of the Yenisei River basin, J. Environ. Radioact., 2003, vol. 66, no. 3, pp. 285–294.

    Article  CAS  PubMed  Google Scholar 

  166. Kabanov, M.V., Markelova, A.N., Melkov, V.N., et al., Monitoring of tritium concentration in water bodies and birch sap in the vicinity of Tomsk city, Ekol. Sist. Prib., 2012, no. 1, pp. 42–45.

  167. Kostyuchenko, V., Akleyev, A., Popova, I.Y., et al., Environmental migration of radionuclides (90Sr, 137Cs, 239Pu) in accidentally contaminated areas of the Southern Urals, in Radioactive Waste, Rahman, R.O.A., Ed., London: IntechOpen, 2012, pp. 65–98.

    Google Scholar 

  168. Kazachenok, N.N., Popova, I.Ya., Mel’nikov, V.S., et al., Contents of 3H, 90Sr, 137Cs, 239,240Pu in the Techa river, Voda: Khim. Ekol., 2013, no. 11, pp. 10–15.

  169. Chebotina, M.Ya., Nikolin, O.A., Smagin, A.I., et al., Tritium in the ponds of industrial and non-industrial usage around the “Mayak” enterprise, Vod. Khoz. Ross.: Probl., Tekhnol., Upr., 2011, no. 4, pp. 75–84.

  170. Aktaev, M.R., Lukashenko, S.N., Aidarkhanov, A.O., et al., Distribution of micro- and macro-components and artificial radionuclides in the reservoir “Atomic Lake”, Radiats. Biol., Radioekol., 2019, vol. 59, no. 3, pp. 311–320.

    Google Scholar 

  171. Aidarkhanov, A.O., Lukashenko, S.N., Aidarkhanova, A.K., et al., Radioactive contamination of the shagan river waters (2011 results), Radiats. Risk, 2014, vol. 23, no. 4, pp. 35–42.

    Google Scholar 

  172. Gudkov, D.I. and Kuz’menko, M.I., Tritii v vodoemakh 30-kilometrovoi zony Chernobyl’skoi AES (Tritium in the Water Bodies of the 30-Kilometer Zone of the Chernobyl Nuclear Power Plant), Kiev: Naukova dumka, 1996, pp. 130-133.

  173. Gudkov, D.I., Tritium in fresh waters of Ukraine and its effect on hydrobionts, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Kiev, 1995.

  174. Gudkov, D.I., Dynamics of tritium content in flood-lands reservoirs of the Pripyat river and cooling pond of the Chernobyl nuclear plant, Radiats. Biol. Radioekol., 1999, vol. 39, no. 6, pp. 605–608.

    CAS  Google Scholar 

  175. Takahata, N., Tomonaga, Y., Kumamoto, Y., et al., Direct tritium emissions to the ocean from the Fukushima Daiichi nuclear accident, Geochem. J., 2018, vol. 52, no. 2, pp. 211–217.

    Article  CAS  Google Scholar 

  176. Tishkov, V.P., Anisovich, K.V., Bondarenko, L.G., et al., Studies of the radiation situation in the coastal areas and adjacent waters of the Russian Far East and the Kuril-Kamchatka region, as well as the northwestern part of the Pacific Ocean in connection with the accident at the Japanese nuclear power plant “Fukushima-1”. Results of expeditions 2011, 2012 and 2014), ANRI, 2016, no. 2, pp. 31–40.

  177. Povinec, P.P., Aoyama, M., Biddulph, D., et al., Cesium, iodine and tritium in NW Pacific waters – a comparison of the Fukushima impact with global fallout, Biogeosciences, 2013, vol. 10, no. 8, pp. 5481–5496.

    Article  CAS  Google Scholar 

  178. Sergeev, A.F., Pozdeev, Yu., Salyuk, A.N., et al., Distribution of tritium in the water circulation in the Chukchi Sea in the winter-spring period, Dokl. Akad. Nauk SSSR, 1990, vol. 312, no. 6, pp. 1472–1475.

    CAS  Google Scholar 

  179. Kaizer, J., Aoyama, M., Kumamoto, Y., et al., Tritium and radiocarbon in the western North Pacific waters: post-Fukushima situation, J. Environ. Radioact., 2018, vol. 184–185, pp. 83–94.

    Article  PubMed  CAS  Google Scholar 

  180. Shozugawa, K., Hori, M., Johnson, T.E., et al., Landside tritium leakage over through years from Fukushima Dai-ichi nuclear plant and relationship between countermeasures and contaminated water, Sci. Rep., 2020, vol. 10, no. 1, art. ID 19925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Buesseler, K.O., Opening the floodgates at Fukushima, Science, 2020, vol. 369. no. 6504, pp. 621–622.

    Article  CAS  PubMed  Google Scholar 

  182. Turchenko, D.V., Lukashenko, S.N., Aidarkhanov, A.O., et al., Study of the content of tritium in the snow cover of the Degelen mountain range, in Sbornik trudov Natsional’nogo yadernogo tsentra Respubliki Kazakhstan “Aktual’nye voprosy radioekologii Kazakhstana” (Proceedings of the National Nuclear Center of the Republic of Kazakhstan “Actual Issues of Radioecology of Kazakhstan”), Lukashenko, S.N., Ed., Kurchatov: Dom Pechati, 2011, pp. 233–242.

  183. Turchenko, D.V., Lukashenko, S.N., Aidarkhanov, A.O., et al., Study of the content of tritium in the snow cover of the Shagan river, in Sbornik trudov Natsional’nogo yadernogo tsentra Respubliki Kazakhstan “Aktual’nye voprosy radioekologii Kazakhstana” (Proceedings of the National Nuclear Center of the Republic of Kazakhstan “Actual Issues of Radioecology of Kazakhstan”), Lukashenko, S.N., Ed., Kurchatov: Dom Pechati, 2011, pp. 329–334.

  184. Turchenko, D.V., Lukashenko, S.N., Aidarkhanov, A.O., et al., Study on tritium content in the snow cover at sites of underground nuclear explosions, Radiats. Biol. Radioekol., 2018, vol. 58, no. 2, pp. 174–182.

    Google Scholar 

  185. Timonova, L.V., Lyakhova, O.N., Lukashenko, S.N., et al., Distribution of tritium in the soil on the territory of the “Atomic” lake of the Semipalatinsk test site, Pochvovedenie, 2020, no. 3, pp. 358–365.

  186. Serzhanova, Z.B., Aidarkhanova, A.K., Lukashenko, S.N., et al., Researching of tritium speciation in soils of “Balapan” site, J. Environ. Radioact., 2018, vol. 192, pp. 621–627.

    Article  CAS  PubMed  Google Scholar 

  187. Timonova, L.V., Lyakhova, O.N., Aidarkhanov, A.O., et al., Tritium in a Strongly bound form in the soils of the Semipalatinsk test site, Zh. Radiats. Issled., 2018, vol. 5, no. 2, pp. 126–127.

    Google Scholar 

  188. Artamonova, S.Yu., Modern radioecological situation on the object of peaceful underground nuclear explosion “Kraton-3” (1978) in Yakutia, Astrakh. Vestn. Ekol. Obraz., 2016, vol. 3, no. 37, pp. 14–24.

    Google Scholar 

  189. Sobakin, P.I., Gerasimov, Ya.R., Chevychelov, A.P., et al., Radioecological situation in the impact zone of the accidental underground nuclear explosion “Kraton-3" in the Republic of Sakha (Yakutia), Radiats. Biol. Radioekol., 2014, vol. 54, no. 6, pp. 641–649.

    CAS  Google Scholar 

  190. Artamonova, S.Yu., Technogenic radionuclides in natural waters of areas of peaceful underground nuclear explosions “Kraton-3” and “Kraton-4”, Geoekol., Inzh. Geol., Gidrogeol., Geokriol., 2013, no. 5, pp. 417–428.

  191. Vostrotin, V.V., Yanov, A.Yu., and Finashov, L.V., Correlation of volume activity of tritium in melted snow and birch sap in “Mayak” PA affected area in spring 2016, Radiats. Biol. Radioekol., 2020, vol. 60, no. 3, pp. 298–304.

    Google Scholar 

  192. Kalashnikova, D.A., Volkov, Yu.V., Markelova, A.N., et al., Radiocarbon and tritium in environmental objects. Practical uses of these radioisotopes, in Materialy V Mezhdunarodnoi konferentsii “Radioaktivnost’ i radioaktivnye elementy v srede obitaniya cheloveka” (Proc. V Int. Conf. “Radioactivity and Radioactive Elements in the Human Environment”), Tomsk: Tomsk. Gos. Univ., 2016, pp. 274–277.

  193. Kovalenko, O.V. and Kryazhich, O.O., Investigation of the dependencies of tritium migration along the chain “melt water of the snow cover – plant”, Tekh. Nauki Tekhnol., 2016, no. 3, pp. 231–239.

  194. Vold, E.L., A Brief Review Of Environmental Transport of Tritium at the Los Alamos Llrw Disposal Facility, Los Alamos: Los Alamos National Lab., 1994.

    Google Scholar 

  195. Kim, S.B., Bredlaw, M., Rousselle, H., et al., Organically bound tritium (OBT) activity concentrations in surface soil at the Chalk River Laboratories, Canada, J. Environ. Radioact., 2019, vol. 208–209, art. ID 105999.

    Article  PubMed  CAS  Google Scholar 

  196. Davis, P., Leclerc, E., Galeriu, D., et al., Specific activity models and parameter values for tritium, 14C and 36Cl, in Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments, IAEA–TECDOC–1616, 2009.

  197. Kim, S.B., Workman, W.J.G., Davis, P.A., et al., HTO and OBT concentrations in a wetland ecosystem, Fusion Sci. Technol., 2008, vol. 54, no. 1, pp. 248–252.

    Article  CAS  Google Scholar 

  198. Thompson, P.A., Kwamena, N.O.A., Ilin, M., et al., Levels of tritium in soils and vegetation near Canadian nuclear facilities releasing tritium to the atmosphere: implications for environmental models, J. Environ. Radioact., 2015, vol. 140, pp. 105–113.

    Article  CAS  PubMed  Google Scholar 

  199. Kim, S.B., Bredlaw, M., and Korolevych, V.Y., HTO and OBT activity concentrations in soil at the historical atmospheric HT release site (Chalk River Laboratories), J. Environ. Radioact., 2012, vol. 103, no. 1, pp. 34–40.

    Article  CAS  PubMed  Google Scholar 

  200. Teng, Y., Zuo, R., Wang, J. et al., Detection of tritium sorption on four soil materials, J. Environ. Radioact., 2011, vol. 102, no. 2, pp. 212–216.

    Article  CAS  PubMed  Google Scholar 

  201. Aidarkhanov, A.O., Lukashenko, S.N., Subbotin, S.B., et al., The state of the river ecosystem Shagan and the main mechanisms of its formation, in Sbornik trudov Instituta radiatsionnoi bezopasnosti i ekologii za 2007–2009 gg “Aktual’nye voprosy radioekologii Kazakhstana” (Proceedings of the Institute of Radiation Safety and Ecology for 2007–2009 “Actual Issues of Radioecology of Kazakhstan”), Lukashenko, S.N., Ed., Pavlodar: Dom Pechati, 2010, pp. 9–55.

  202. Mitchell, P.I., Vintró, L.L., Omarova, A., et al., Tritium in well waters, streams and atomic lakes in the East Kazakhstan Oblast of the Semipalatinsk Nuclear Test Site, J. Radiol. Prot., 2005, vol. 25, no. 2, pp. 141–148.

    Article  CAS  PubMed  Google Scholar 

  203. Subbotin, S.B., Aidarkhanov, A.O., and Dubasov, Yu.V., Study of tritium migration with groundwater at the former Semipalatinsk test site, Radiokhimiya, 2013, vol. 55, no. 5, pp. 471–478.

    Google Scholar 

  204. Artamonova, S.Yu., Tritium as an indicator of the radioecological situation in the area of the peaceful underground nuclear explosion “Kristall”, Astrakh. Vestn. Ekol. Obraz., 2019, no. 4, pp. 4–13.

  205. Chebotina, M.Ya. and Nikolin, O.A., Tritium migration from nuclear fuel enterprises to drinking water sources in the Urals, Vodn. Khoz. Ross.: Probl., Tekhnol., Upr., 2013, no. 4, pp. 90–100.

  206. Chebotina, M.Ya., Nikolin, O.A., and Rybakov, E.N., Tritium levels in the sources of drinking water supply in the region of beloyarskaya atomic power station in the Urals, Ural. Geofiz. Vestn., 2011, no. 1, pp. 40–44.

  207. Ivanitskaya, M.V. and Malofeeva, A.I., Istochniki postupleniya tritiya v okruzhayushchuyu sredu, in Tritii – Eto Opasno. Chelyabinsk: Dvizhenie za Yadernuyu Bezopasnost’, Tsentr podderzhki grazhdanskikh initsiativ, 2001.

  208. Rybin, A.A., Rozhdestvenskaya, L.N., and Ryaskova, M.V., Measurement of tritium activity in surface and deep underground waters as an effective tool for monitoring the integrity of the protective barriers of storage facilities for liquid radioactive waste, in Sbornik trudov AO GNTs NIIAR (Proc. State Sci. Cent. – Res. Inst. Atomic Reactors), 2010, no. 3, pp. 57–59.

  209. Paramonova, T.I., Pol’skii, O.G., Kashirin, I.A., et al., Tritium at special plants “Radon”, content in the environment, Med. Tr. Prom. Ekol., 2006, no. 10, pp. 42–46.

  210. Kashiwaya, K., Muto, Y., Kubo, T., et al., Spatial variations of tritium concentrations in groundwater collected in the southern coastal region of Fukushima, Japan, after the nuclear accident, Sci. Rep., 2017, vol. 7, no. 1, art. ID 12578.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Fourre, E., Jean-Baptiste, P., Dapoigny, A., et al., Tritium/Helium-3 dating of groundwaters around Chernobyl site, Geochim. Cosmochim. Acta, 2010, vol. 74, no. 12, art. ID A301.

    Google Scholar 

  212. Kayukova, E.P., Isotopic composition of the natural waters of the Crimean mountains under the influence of natural processes, Vestn. S.-Peterb. Univ., Ser. 7: Geol., Geogr., 2016, no. 2, pp. 11–26.

  213. Sokolovskii, L.G., Polyakov, V.A., Sokolova, A.V., et al., Isotope-hydrogeochemical study of underground and surface waters of the West Siberian artesian basin and the Ural complex hydrogeological folded region, Razved. Okhr. Nedr., 2010, no. 7, pp. 65–71.

  214. Jakimavičiūtė-Maselienė, V. and Cidzikienė, V., Modelling of tritium transport in the underground water from hypothetical reactor at the new NPP site in Lithu-ania, Prog. Nucl. Energy, 2015, vol. 80, pp. 1–6.

    Article  CAS  Google Scholar 

  215. Ota, M., Kwamena, N.-O.A., Mihok, S., et al., Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: Comparison of experimental garden and tritium-transfer model results, J. Environ. Radioact., 2017, vol. 178–179, pp. 212–231.

    Article  PubMed  CAS  Google Scholar 

  216. Guetat, P., Boyer, C., Tognelli, A., et al., 50 years environmental tritium transfer review in the vicinity of French Research Centre, Fusion Sci. Technol., 2011, vol. 60, no. 4, pp. 1238–1243.

    Article  CAS  Google Scholar 

  217. Galeriu, D., Davis, P., Raskob, W., et al., Recent progresses in tritium radioecology and dosimetry, Fusion Sci. Technol., 2008, vol. 54, no. 1, pp. 237–242.

    Article  CAS  Google Scholar 

  218. Belot, Y., Guenot, J., Caput, C., et al., Incorporation of tritium into organic matter of terrestrial plants exposed to tritiated-water releases of short duration, Health Phys., 1983, vol. 44, no. 6, pp. 666–668.

    CAS  PubMed  Google Scholar 

  219. Korolevych, V.Y., Kim, S.B., and Davis, P.A., OBT/HTO ratio in agricultural produce subject to routine atmospheric releases of tritium, J. Environ. Radioact., 2014, vol. 129, pp. 157–168.

    Article  CAS  PubMed  Google Scholar 

  220. Mihok S., Wilk, M., Lapp, A., et al., Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada, J. Environ. Radioact., 2016, vol. 153, pp. 176–187.

    Article  CAS  PubMed  Google Scholar 

  221. Melintescu, A. and Galeriu, D., Uncertainty of current understanding regarding OBT formation in plants, J. Environ. Radioact., 2017, vol. 167, pp. 134–149.

    Article  CAS  PubMed  Google Scholar 

  222. Galeriu, D., Melintescu, A., Strack, S., et al., An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure, J. Environ. Radioact., 2013, vol. 118, pp. 40–56.

    Article  CAS  PubMed  Google Scholar 

  223. Meng, D., Wang, W., Du, Y., et al., Tritium distribution in typical plants around tritium laboratory in south-west of China, J. Environ. Radioact., 2021, vol. 227, art. ID 106504.

    Article  CAS  PubMed  Google Scholar 

  224. Krištof, R., Košenina, S., Zorko, B., et al., Tritium in organic matter around Krško Nuclear Power Plant, J. Radioanal. Nucl. Chem., 2017, vol. 314, no. 2, pp. 675–679.

    Article  CAS  Google Scholar 

  225. Boyer, C., Vichot, L., Fromm, M., et al., Tritium in plants: a review of current knowledge, Environ. Exp. Bot., 2009, vol. 67, no. 1, pp. 34–51.

    Article  CAS  Google Scholar 

  226. Choi, Y.H., Lim, K.M., Lee, W.Y., et al., Tritium levels in Chinese cabbage and radish plants acutely exposed to HTO vapor at different growth stages, J. Environ. Radioact., 2005, vol. 84, no. 1, pp. 79–94.

    Article  CAS  PubMed  Google Scholar 

  227. Cline, J., Absorption and metabolism of tritium oxide and tritium gas by bean plants, Plant Physiol., 1953, vol. 28, no. 4, pp. 717–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Choi, Y.H., Lim, K.M., Lee, W.Y., et al., Tissue free water tritium and organically bound tritium in the rice plant acutely exposed to atmospheric HTO vapor under semi-outdoor conditions, J. Environ. Radioact., 2002, vol. 58, no. 1, pp. 67–85.

    Article  CAS  PubMed  Google Scholar 

  229. Guidelines for Calculating Derived Release Limits for Radioactive Material in Airborne and Liquid Effluents for Normal Operation of Nuclear Facilities, Toronto: CSA, 2014, pp. 1–14.

  230. Mihok, S., Clark, I.D., Wilk, M., et al., Tritium dynamics in soils and plants at a tritium processing facility in Canada, Proc. Intern. Conf. Radioec. Environ. Radioact. Barcelona, Spain, 2014.

  231. Svetlik, I., Fejgl, M., Malátová, I., et al., Enhanced activities of organically bound tritium in biota samples, Appl. Radiat. Isot., 2014, vol. 93, pp. 82–86.

    Article  CAS  PubMed  Google Scholar 

  232. Brudenell, A.J.P., Collins, C.D., and Shaw, G., Dynamics of tritiated water (HTO) uptake and loss by crops after short-term atmospheric release, J. Environ. Radioact., 1997, vol. 36, nos. 2–3, pp. 197–218.

    Article  CAS  Google Scholar 

  233. Joshi, C., Patra, A., Jha, M., et al., Studies on foliar uptake of tritiated water on Spinach sp. during light and dark simulated conditions using environmental chamber, Radiat. Prot. Environ., 2021, vol. 44, no. 3, pp. 131–134.

    Article  Google Scholar 

  234. Bobkov V.M. and Dolin V.V., Isotope exchange of tritium during the vegetation of willow, in Zbirnik Naukovikh Prats’ Institutu Geokhimiï Navkolishn’ogo Seredovishcha, 2016, no. 25, pp. 49–55.

  235. Uzikov, V., Vacuum separation of water molecules by hydrogen isotopes, 2021. http://www.proatom.ru/ modules.php?name=News&file=article&sid=9612. Cited April 14, 2021.

  236. Larionova, N.V., Lukashenko, S.N., Lyakhova, O.N., et al., Plants as indicators of tritium concentration in ground water at the Semipalatinsk test site, J. Environ. Radioact., 2017, vol. 177, pp. 218–224.

    Article  CAS  PubMed  Google Scholar 

  237. Kim, S.B. and Korolevych, V., Quantification of exchangeable and non-exchangeable organically bound tritium (OBT) in vegetation, J. Environ. Radioact., 2013, vol. 118, pp. 9–14.

    Article  CAS  PubMed  Google Scholar 

  238. Kim, S.B., Bredlaw, M., and Farrow, F., Determination of changes to TFWT and OBT concentrations in potatoes and Swiss chard as a result of preparation for human consumption, J. Environ. Radioact., 2014, vol. 137, pp. 18–21.

    Article  CAS  PubMed  Google Scholar 

  239. Boyer, C., Gontier, G., Chauveau, J., et al., Environmental survey near a decommissioning nuclear facility: example of tritium monitoring in the terrestrial environment of Creys-Malville, Proc. Intern. Conf. Radioec. Environ. Radioact. Barcelona, Spain, 2014.

  240. Polivkina, E.N., Larionova, N.V., and Lyakhova, O.N., Assessment of tritium uptake by Helianthus annuus culture continuously exposed to HTO at the Semipalatinsk test site, Radiats. Risk., 2020, vol. 29, no. 1, pp. 79–89.

    Google Scholar 

  241. Diabaté, S. and Strack, S., Organically bound tritium in wheat after short-term exposure to atmospheric tritium under laboratory conditions, J. Environ. Radioact., 1997, vol. 36, nos. 2–3, pp. 157–175.

    Article  Google Scholar 

  242. Galeriu, D., Melintescu, A., and Lazar, C., Development of CROPTRIT model: the dynamics of tritium in agricultural crops, Proc. Intern. Conf. Radioec. Environ. Radioact. Barcelona, Spain, 2014.

  243. Twining, J.R., Hughes, C.E., Harrison, J.J., et al., Biotic, temporal and spatial variability of tritium concent-rations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste disposal site and nearby research reactor, J. Environ. Radioact., 2011, vol. 102, no. 6, pp. 551–558.

    Article  CAS  PubMed  Google Scholar 

  244. Yamada, Y., Yasuike, K., and Komura, K., Temporal variation of tritium concentration in tree-ring cellulose over the past 50 years, J. Radioanal. Nucl. Chem., 2004, vol. 262, no. 3, pp. 679–683.

    Article  CAS  Google Scholar 

  245. Kabanov, M.V., Markelova, A.N., Melkov, V.N., et al., The content of tritium and radiocarbon in natural environments in the vicinity of Tomsk, Vopr. Radiats. Bezop., 2013, no. 4, pp. 30–44.

  246. Kabanov, D.I., Kochetkov, O.A., Fomin, G.V., et al., To justification of organically bound tritium monitoring in nuclear facilities environment, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2012, no. 1, pp. 17–22.

  247. Durzan, D.J., Mia, A.J., and Wang, B.S.P., Effects of tritiated water on the metabolism and germination of jack pine seeds, Can. J. Bot., 1971, vol. 49, no. 12, pp. 2139–2149.

    Article  CAS  Google Scholar 

  248. Dinner, P.J., Gorman, D.J., and Spencer, F.S., Tritium dynamics in vegetables: experimental results, in Proceedings: Tritium Technology in Fission, Fusion, and Isotopic Applications, Dayton: Amer. Nucl. Soc., 1980, pp. 9–13.

    Google Scholar 

  249. Hisamatsu, S.i., Inoue, Y., and Takizawa, Y., Tritium concentrations in some European foods, J. Environ. Radioact., 1989, vol. 10, no. 3, pp. 251–255.

    Article  CAS  Google Scholar 

  250. Van Hook, R.I. and Deal, S.L., Tritium uptake and elimination by tissue-bound and body-water components in crickets (Acheta domesticus), J. Insect Physiol., 1973, vol. 19, no. 3, pp. 681–687.

    Article  CAS  PubMed  Google Scholar 

  251. Nakagaki, B.J. and Defoliart, G.R., Comparison of diets for mass-rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock, J. Econ. Entomol., 1991, vol. 84, no. 3, pp. 891–896.

    Article  Google Scholar 

  252. Takeda, H. and Kasida, Y., Biological behavior of tritium after administration of tritiated water in the rat, J. Radiat. Res., 1979, vol. 20, no. 2, pp. 174–185.

    Article  CAS  PubMed  Google Scholar 

  253. Radwan, I., Pietrzak-Flis, Z.,and Jaworowski, Z., Tritium retention in rat after administration of various doses of tritiated waterm, Curr. Top. Radiat. Res. Q., 1978, vol. 12, nos. 1–4, pp. 278–290.

    CAS  PubMed  Google Scholar 

  254. Kelsey-Wall, A., Seaman, J.C., Jagoe, C.H., et al., Rodents as receptor species at a tritium disposal site, J. Environ. Radioact., 2005, vol. 82, no. 1, pp. 95–104.

    Article  CAS  PubMed  Google Scholar 

  255. Le Goff, P., Guétat, P., Vichot, L., et al., Tritium le-vels in milk in the vicinity of chronic tritium releases, J. Environ. Radioact., 2016, vol. 151, pp. 282–292.

    Article  CAS  PubMed  Google Scholar 

  256. Bogen, D.C. and Welford, G.A., «Fallout Tritium» Distribution in the Environment, Health Phys., 1976, vol. 30, no. 2, pp. 203–208.

    Article  CAS  PubMed  Google Scholar 

  257. van den Hoek, J., ten Have, M.H., and Gerber, G.B., The metabolism of tritium and water in the lactating dairy cow, Health Phys., 1983, vol. 44, no. 2, pp. 127–133.

    Article  CAS  PubMed  Google Scholar 

  258. van den Hoek, J., Have, M.H.J., Gerber, G.B., et al., The transfer of tritium-labeled organic material from grass into cow’s milk, Radiat. Res., 1985, vol. 103, no. 1, pp. 105–113.

    Article  CAS  PubMed  Google Scholar 

  259. Baigazinov, Zh.A., Lukashenko, S.N., Panitskii, A.V., et al., Transition of tritium into mare’s milk, Sovrem. Probl. Nauki Obraz., 2014, no. 2, pp. 498–498.

  260. Galeriu, D., Melintescu, A., Beresford, N.A., et al., Modelling 3H and 14C transfer to farm animals and their products under steady state conditions, J. Environ. Radioact., 2007, vol. 98, no. 1, pp. 205–217.

    Article  CAS  PubMed  Google Scholar 

  261. Eyrolle-Boyer, F., Boyer, P., Claval, D., et al., Apparent enrichment of organically bound tritium in rivers explained by the heritage of our past, J. Environ. Radioact., 2014, vol. 136, pp. 162–168.

    Article  CAS  PubMed  Google Scholar 

  262. Blaylock, B.G., Hoffman, F.O., and Frank, M.L., Tritium in the Aquatic Environment, Oak Ridge: Oak Ridge National Lab., 1986.

    Book  Google Scholar 

  263. Jaeschke, B.C. and Bradshaw, C., Bioaccumulation of tritiated water in phytoplankton and trophic transfer of organically bound tritium to the blue mussel, Mytilus edulis, J. Environ. Radioact., 2013, vol. 115, pp. 28–33.

    Article  CAS  PubMed  Google Scholar 

  264. Gogate, S.S. and Krishnamoorthy, T.M., Uptake of tritiated lysine by fresh water alga, Scenedesmus obliquus, Indian J. Exp. Biol., 1983, vol. 21, no. 9, pp. 504–506.

    CAS  Google Scholar 

  265. Bondareva, L.G., Tritium content of some components of the middle Yenisei ecosystem, Radiochemistry, 2015, vol. 57, pp. 557–563.

    Article  CAS  Google Scholar 

  266. Baeza, A., García, E., Paniagua, J.M., et al., Study of the comparative dynamics of the incorporation of tissue free-water tritium (TFWT) in bulrushes (Typha latifolia) and carp (Cyprinus carpio) in the Almaraz nuclear power plant cooling reservoir, J. Environ. Radioact., 2009, vol. 100, no. 3, pp. 209–214.

    Article  CAS  PubMed  Google Scholar 

  267. Bondareva, L.G., Study of the accumulation of tritium in some aquatic organisms: eggs and fish (Carassius gibelio), aquatic plants Ceratophyllum and Lemna, Radiats. Biol. Radioekol., 2020, vol. 60, no. 1, pp. 71–81.

    Google Scholar 

  268. Lashchenova, T.N., Bondareva, L.G., Fedorova, N.E., et al., Detection of pathway of tritium entry into freshwater organisms in the exploitation of the mining and chemical combine, Gig. Sanit., 2017, vol. 96, no. 9, pp. 844–848.

    Article  Google Scholar 

  269. Strack, S. and Kistner, G., Biokinetic aspects of tissue-bound tritium in algae, Curr. Top. Radiat. Res. Q., 1978, vol. 12, nos. 1–4, pp. 133–141.

    CAS  PubMed  Google Scholar 

  270. Jaeschke, B.C., Millward, G.E., Moody, A.J., et al., Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, Mytilus edulis, Environ. Pollut., 2011, vol. 159, no. 1, pp. 274–280.

    Article  CAS  PubMed  Google Scholar 

  271. Jha, A.N., Dogra, Y., Turner, A., et al., Impact of low doses of tritium on the marine mussel, Mytilus edulis: Genotoxic effects and tissue-specific bioconcentration, Mutat. Res./Genet. Toxicol. Environ. Mutagen., 2005, vol. 586, no. 1, pp. 47–57.

    Article  CAS  Google Scholar 

  272. Yankovich, T.L., Kim, S.B., Baumgärtner, F., et al., Measured and modelled tritium concentrations in freshwater Barnes mussels (Elliptio complanata) exposed to an abrupt increase in ambient tritium levels, J. Environ. Radioact., 2011, vol. 102, no. 1, pp. 26–34.

    Article  CAS  PubMed  Google Scholar 

  273. Janovics, R., Bihari, Á., Papp, L., et al., Monitoring of tritium, 60Co and 137Cs in the vicinity of the warm water outlet of the Paks Nuclear Power Plant, Hungary, J. Environ. Radioact., 2014, vol. 128, pp. 20–26.

    Article  CAS  PubMed  Google Scholar 

  274. Melintescu, A., Galeriu, D., and Kim, S., Tritium dynamics in large fish – a model test, Radioprotection, 2011, vol. 46, no. 6, pp. S431–S436.

    Article  Google Scholar 

  275. Arcanjo, C., Maro, D., Camilleri, V., et al., Assessing tritium internalisation in zebrafish early life stages: Importance of rapid isotopic exchange, J. Environ. Radioact., 2019, vol. 203, pp. 30–38.

    Article  CAS  PubMed  Google Scholar 

  276. Patzer, R., Moghissi, A., and McNelis, D., Accumulation of tritium in various species of fish reared in tritiated water, in Environmental Behavior of Radionuclides Released by the Nuclear Industry, Vienna: IAEA, 1973, pp. 403–412.

    Google Scholar 

  277. Kim, S.B., Rowan, D., Chen, J., et al., Tritium in fish from remote lakes in northwestern Ontario, Canada, J. Environ. Radioact., 2018, vol. 195, pp. 104–108.

    Article  CAS  PubMed  Google Scholar 

  278. Ould-Dada, Z., Fairlie, I., and Read, C., Transfer of radioactivity to fruit: significant radionuclides and speciation, J. Environ. Radioact., 2001, vol. 52, nos. 2–3, pp. 159–174.

    Article  CAS  PubMed  Google Scholar 

  279. Modelling the Environmental Transport of Tritium in the Vicinity of Long-Term Atmospheric and Sub-Surface Sources, Vienna: IAEA, 2003.

  280. Linsley, G. and Torres, C., The international biosphere modelling and assessment programme (BIOMASS): an overview, J. Environ. Radioact., 2004, vol. 74, nos. 1–3, pp. 279–283.

    Article  CAS  PubMed  Google Scholar 

  281. Korolevych, V.Y. and Kim, S.B., Modelling and validation of OBT formation in tomato and potato plants, Fusion Sci. Technol., 2011, vol. 60, no. 4, pp. 1288–1291.

    Article  CAS  Google Scholar 

  282. Environmental Modelling for Radiation Safety (EMRAS) – a Summary Report of the Results of the EMRAS Programme (2003–2007), Vienna: IAEA, 2012.

  283. Betti, M., Aldave de las Heras, L., Janssens, A., et al., Results of the European Commission MARINA II study: part I – general information and effects of discharges by the nuclear industry, J. Environ. Radioact., 2004, vol. 74, nos. 1–3, pp. 243–254.

    Article  CAS  PubMed  Google Scholar 

  284. MARINA II. Update of the MARINA Project on the radiological exposure of the European Community from radioactivity in North European marine waters, EC, 2003.

  285. MARINA II. Update of the MARINA Project on the radiological exposure of the European Community from radioactivity in North European marine waters. Executive Summary, EC, 2003.

  286. Krylov, A.L., Nossov A.V., and Kazakov, S.V., SIBYLLA Code: Assessment of water bodies contamination and doses received by population due to radioactivity discharges into the hydrosphere, Int. Conf. on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), IAEA, 2017, pp. 1–10.

  287. Jeffers, R.S. and Parker, G.T., Development, description and validation of a Tritium Environmental Release Model (TERM), J. Environ. Radioact., 2014, vol. 127, pp. 95–104.

    Article  CAS  PubMed  Google Scholar 

  288. Le Dizès, S., Aulagnier, C., Henner, P. et al., TOCATTA: a dynamic transfer model of 3H from the atmosphere to soil-plant systems, J. Environ. Radioact., 2013, vol. 124, pp. 191–204.

    Article  PubMed  CAS  Google Scholar 

  289. Higgins, N.A., TRIF—An intermediate approach to environmental tritium modelling, J. Environ. Radioact., 1997, vol. 36, no. 2, pp. 253–267.

    Article  CAS  Google Scholar 

  290. Liger, K., Grisolia, C., Cristescu, I., et al., Overview of the TRANSAT (TRANSversal Actions for Tritium) project, Fusion Eng. Des., 2018, vol. 136, pp. 168–172.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Sci. (Eng.) I.I. Linge (Nuclear Safety Institute, Russian Academy of Sciences) and Dr. Sci. (Biol.) V.N. Pozolotina (Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences) for valuable comments and recommendations, which helped to significantly improve the article.

Funding

The data were collected as part of the research “Development of the Legislative and Regulatory Framework in the Field of Application of Atomic Energy, Including New Types of Nuclear Facilities and Thermonuclear and Hybrid Systems” of the federal project “Development of Controlled Thermonuclear Fusion Technologies and Innovative Plasma Technologies” of the integrated program of the Russian Federation “Development of Engineering and Technologies and Scientific Studies in the Field of Application of Atomic Energy.” The results were analyzed and interpreted as part of the state assignment of the Institute of Plant and Animal Ecology (Ural Branch, Russian Academy of Sciences), Institute of Industrial Ecology (Ural Branch, Russian Academy of Sciences), and Nuclear Safety Institute (Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Antonova.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, E.V., Antonov, K.L., Vasyanovich, M.E. et al. Tritium from the Molecule to the Biosphere. 1. Patterns of Its Behavior in the Environment. Russ J Ecol 53, 253–284 (2022). https://doi.org/10.1134/S1067413622040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413622040038

Keywords:

Navigation