Skip to main content

Nutrients Availability Shapes Fungal Community Composition and Diversity in the Rare Earth Mine Tailings of Southern Jiangxi, China

Abstract

The present study characterized the nutrients availability of three rare earth tailings deserted in different time stages in Southern Jiangxi of China, and revealed the influence of the soil nutrient properties on fungi composition and diversity by using an internal transcribed spacer (ITS) rRNA sequence approach. Three tailings (RS1, RS2 and RS3) and one reference soil (RS4) were sampled. Results showed that a higher levels of AN and TOC occurred in RS1 and RS4, whereas higher contents of SO2-4, TN, NO-3-N, NH+4-N and rare earth elements (REEs) existed in RS2 and RS3, suggesting a high environmental heterogeneity in the different tailings. Metagenomic analysis showed that RS1~RS4 harbored 355, 564, 366 and 507 operational taxonomic units (OTUs), respectively. Alpha diversity analysis showed that RS4, a control sample, had the highest Shannon diversity, whereas RS3, a newly formed tailings, exhibited the lowest Chao1 richness.

Among the monitored environmental variables, AN and SO2-4 were the most important factors affecting the overall fungal community composition and the relative abundances of specific lineages. Additionally, genus Penicillium prevailed in RS1and RS4 while genus Aspergillus dominated in RS2 and RS3, indicating that the nitrification maybe conduct by different fungal genus in different tailings. Together, these results suggest that lower fungal community composition and diversity as well as the alteration in fungi-dominated heterotrophic nitrification may be due to the deteriorative nutrient in rare earth tailings, especially increasing level of sulfate and decreasing level of available nitrogen.

This is a preview of subscription content, access via your institution.

References

  1. Wang, Z., On the development of China’s rare earth resources and environment protection, J. Zhejiang Univ. Tech., 2015, vol. 14, pp. 13–17.

    CAS  Google Scholar 

  2. Johnson, D.B., Acidophilic microbial communities: Candidates for bioremediation of acidic mine effluents, Int. Biodeterior. Biodegradation, 1995, vol. 35, no. 1–3, pp. 41–58.

    Article  CAS  Google Scholar 

  3. White, J.R., Nagarajan, N., and Pop, M., Statistical methods for detecting differentially abundant features in clinical metagenomic samples PLoS Comput. Biol., 2009, vol. 5, e1000352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zappelini, C., Karimi, B., Foulon, J., et al., Diversity and complexity of microbial communities from a chloralkali tailings dump, Soil Biol. Biochem., 2015, vol. 90, pp. 101–110.

    Article  CAS  Google Scholar 

  5. Kwon M.J., Yang J.S., Lee. S., Lee G, et al., Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au-Ag mine tailings, J. Hazard. Mater., 2015, vol. 296, pp. 147–157.

    Article  CAS  PubMed  Google Scholar 

  6. Solis-Dominguez, F.A., Valentin-Vargas, A., Chorover, J., et al., Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings, Sci.Tot. Environ., 2011, vol. 409, pp. 1009–1016.

    Article  CAS  Google Scholar 

  7. Nguyen, V.K. and Lee, J.U., A comparison of microbial leaching and chemical leaching of arsenic and heavy metals from mine tailings, Biotechnol. Bioprocess Eng., 2015, vol. 20, no. 1, pp. 91–99.

    Article  CAS  Google Scholar 

  8. Dong, H., Zhang, G., Jiang, H., et al., Microbial diversity in sediments of saline Qinghai Lake, China: Linking geochemical controls to microbial ecology, Microb. Ecol., 2006, vol. 51, pp. 65–82.

    Article  CAS  PubMed  Google Scholar 

  9. Praharaj, T. and Fortin, D., Seasonal variations of microbial sulfate and iron reduction in alkaline Pb-Zn mine tailings (Ontario, Canada), Appl. Geochem., 2008, vol. 23, pp. 3728–3740.

    Article  CAS  Google Scholar 

  10. Bondici, V.F., Khan, N.H., Swerhone, G.D.W., et al., Biogeochemical activity of microbial biofilms in the water column overlying uranium mine tailings, J. Appl. Microbiol., 2014, vol. 117, pp. 1079–1094.

    Article  CAS  PubMed  Google Scholar 

  11. Khan, N.H., Bondici, V.F., Medihala, P.G., et al., Bacterial diversity and composition of an alkaline uranium mine tailings-water interface, J. Microbiol., 2013, vol. 51, pp. 558–569.

    Article  CAS  PubMed  Google Scholar 

  12. Hao, C., Wang, L., Gao, Y., et al., Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China, Extremophiles, 2010, vol. 14, pp. 465–474.

    Article  Google Scholar 

  13. Lindsay, M.B.J., Condon, P.D., Jambor, J.L., et al., Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage Appl. Geochem., 2009, vol. 24, pp. 2212–2221.

    Article  CAS  Google Scholar 

  14. Nakatsu, C. and Hutchinson, T.C., Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism, Microb. Ecol., 1988, vol. 16, pp. 213–231.

    Article  CAS  PubMed  Google Scholar 

  15. Merten, D., Kothe, E., and Büchel, G., Studies on microbial heavy metal retention from uranium mine drainage water with special emphasis on rare earth elements, Mine Water. Environ., 2004, vol. 23, pp. 34–43.

    Article  CAS  Google Scholar 

  16. Guo, W., Zhao, R., Zhao, W., et al., Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings, Appl. Soil. Ecol., 2013, vol. 72, pp. 85–92.

    Article  Google Scholar 

  17. Hong, C., Si, Y., Xing, Y., et al., Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas, Environ. Sci. Pollut. Res., 2015, vol. 22, pp. 10788–10799.

    Article  CAS  Google Scholar 

  18. Korehi, H., Bloethe, M., and Schippers, A., Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage, Res. Microbiol., 2014, vol. 165, pp. 713–718.

    Article  CAS  PubMed  Google Scholar 

  19. Pan, W.Z., Huang, X.W., Wei, K.B., et al., Diversity of thermophilic fungi in Tengchong Rehai national park revealed by ITS nucleotide sequence analyses, J. Microbiol., 2010, vol. 48, pp. 146–152.

    Article  CAS  PubMed  Google Scholar 

  20. Bokulich, N.A., Subramanian, S., Faith, J.J., et al., Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing, Nat. Methods, 2013, vol. 10, pp. 57–59.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, J., Hua, Z.S., Chen, L.X., et al., Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings, Appl. Environ. Microbiol., 2014, vol. 80, pp. 3677–3686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, L.X., Li, J.T., Chen, Y.T., et al., Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings, Environ. Microbiol., 2013, vol. 15, pp. 2431–2444.

    Article  CAS  PubMed  Google Scholar 

  23. Yao, L., Shi, J., and Miao, X., Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal, PLoS One, 2015, vol. 10, e0139117.

  24. Ma, G., Zhang, Y., Zhang, J., et al., Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: Taking Dongting Biluochun as an example, Food Control, 2016, vol. 59, pp. 714–720.

    Article  CAS  Google Scholar 

  25. Gardes, M., Bruns, T.D., ITS primers with enhanced specificity for basidiomycetes: Application to the identification of mycorrhizae and rusts, Mol. Ecol., 1993, vol. 2, pp. 113–118.

    Article  CAS  PubMed  Google Scholar 

  26. Magoc, T. and Salzberg, S.L., FLASH: Fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 2011, vol. 27, pp. 2957–2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caporaso, J.G., Kuczynski, J., Stombaugh, J., et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 2010, vol. 7, pp. 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kõljalg, U., Nilsson, R.H., Abarenkov, K., et al., Towards a unified paradigm for sequence-based identification of fungi, Mol. Ecol., 2013, vol. 22, pp. 5271–5277.

    Article  CAS  PubMed  Google Scholar 

  29. Edgar, R.C., Haas, B.J., Clemente, J.C., et al., UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, 2011, vol. 27, pp. 2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, B.D., Zhu, Y.G., Duan, J., et al., Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings, Environ. Pollut., 2007, vol. 147, pp. 374–380.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, J., Hua, Z.S., Chen, L.X., et al., Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings, Appl. Environ. Microbiol., 2014, vol. 80, pp. 3677–3686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding, S.M., Liang, T., Zhang, Z.L., et al., Effect of rare earths on fractionation and transformation of soil available nitrogen, J. Rare Earths, 2003, vol. 21, pp. 582–586.

    Google Scholar 

  33. Shoja, S.E. and Salari, M.M., Study of acid mine drainage production potential in flotation tailings of Sarcheshmeh porphyry copper mine, Arab. J. Geosci., 2015, vol. 8, pp. 8229–8236.

    Article  CAS  Google Scholar 

  34. Bååth, E., Frostegård, Å., Pennanen, T., et al., Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils, Soil Biol. Biochem., 1995, vol. 27, pp. 229–240.

    Article  Google Scholar 

  35. Rousk, J., Brookes, P.C., and Bååth, E., Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization, Appl. Environ. Microbiol., 2009, vol. 75, pp. 1589–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kemmitt, S.J., Wright, D., Goulding, K.W.T., et al., pH regulation of carbon and nitrogen dynamics in two agricultural soils Soil Biol. Biochem., 2006, vol. 38, pp. 898–911.

    Article  CAS  Google Scholar 

  37. Xi, Y., Sun, C., Zhang, S., et al., Effect of exchangeable ions and total acidity on corrosion of mild steel in acidic soil, Corrosion Sci. Protect. Tech., 2002, vol. 14, pp. 343–345.

    CAS  Google Scholar 

  38. Cong, J., Liu, X., Lu. H., et al., Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest, BMC Microbiol., 2015, vol. 15, pp. 1–10.

    Article  CAS  Google Scholar 

  39. Liu, D., Wang, Z., Influence of rare earth elements on chemical transformation of nitrogen in agricultural soil, Chinese J. Appl. Ecol., 2001, vol. 12, pp. 545–548.

    Google Scholar 

  40. Elser, J.J., Andersen, T., Baron, J.S., et al., Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition, Science, 2009, vol. 326, pp. 835–837.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Z., Fu, B., Zheng, X., et al., Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study, Soil Biol. Biochem., 2010, vol. 42, pp. 445–450.

    Article  CAS  Google Scholar 

  42. Penuelas, J., Sardans, J., Rivas-Ubach, A., et al., The human-induced imbalance between C, N and P in Earth’s life system, Global Change Biol., 2012, vol. 18, pp. 3–6.

    Article  Google Scholar 

  43. Zhu, T., Meng, T., Zhang, J., et al., Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China, Biol. Fert. Soils, 2013, vol. 49, pp. 323–331.

    Article  CAS  Google Scholar 

  44. Malhi, S.S. and McGill, W.B., Nitrification in three Alberta soils: Effect of temperature, moisture and substrate concentration, Soil Biol. Biochem., 1982, vol. 14, pp. 393–399.

    Article  CAS  Google Scholar 

  45. Liu, X., Zhou, J., Li., W., et al., The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure, Environ. Sci. Pollut. Res., 2014, vol. 21, pp. 6623–6631.

    Article  CAS  Google Scholar 

  46. Zhao, X. and Xing, G.X., Variation in the relationship between nitrification and acidification of subtropical soils as affected by the addition of urea or ammonium sulfate, Soil Biol. Biochem., 2009, vol. 41, pp. 2584–2587.

    Article  CAS  Google Scholar 

  47. Piutti, S., Slezack-Deschaumes, S., Niknahad-Gharmakher, H., et al., Relationships between the density and activity of microbial communities possessing arylsulfatase activity and soil sulfate dynamics during the decomposition of plant residues in soil, Eur. J. Soil Biol., 2015, vol. 70, pp. 88–96.

    Article  CAS  Google Scholar 

  48. Zhang, Y., Zhang, J., Meng, T., et al., Heterotrophic nitrification is the predominant NO3 production pathway in acid coniferous forest soil in subtropical China, Biol. Fert. Soils, 2013, vol. 49, pp. 955–957.

    Article  CAS  Google Scholar 

  49. Zhu, T., Meng, T., Zhang, J., et al., Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China, J. Soils Sediments, 2014, vol. 15, pp. 705–709.

    Article  CAS  Google Scholar 

  50. Stroo, H.F., Klein, T.M., and Alexander, M., Heterotrophic nitrification in an acid forest soil and by an acid-tolerant fungus, Appl. Environ. Microbiol., 1986, vol. 52, pp. 1107–1111.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoucheng Huang.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, G., Wang, X., Liu, X. et al. Nutrients Availability Shapes Fungal Community Composition and Diversity in the Rare Earth Mine Tailings of Southern Jiangxi, China. Russ J Ecol 49, 524–533 (2018). https://doi.org/10.1134/S1067413618660037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413618660037

Keywords

  • fungal community
  • illumina-based sequencing approach
  • nutrients availability
  • rare earth tailings