Wang, Z., On the development of China’s rare earth resources and environment protection, J. Zhejiang Univ. Tech., 2015, vol. 14, pp. 13–17.
CAS
Google Scholar
Johnson, D.B., Acidophilic microbial communities: Candidates for bioremediation of acidic mine effluents, Int. Biodeterior. Biodegradation, 1995, vol. 35, no. 1–3, pp. 41–58.
Article
CAS
Google Scholar
White, J.R., Nagarajan, N., and Pop, M., Statistical methods for detecting differentially abundant features in clinical metagenomic samples PLoS Comput. Biol., 2009, vol. 5, e1000352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zappelini, C., Karimi, B., Foulon, J., et al., Diversity and complexity of microbial communities from a chloralkali tailings dump, Soil Biol. Biochem., 2015, vol. 90, pp. 101–110.
Article
CAS
Google Scholar
Kwon M.J., Yang J.S., Lee. S., Lee G, et al., Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au-Ag mine tailings, J. Hazard. Mater., 2015, vol. 296, pp. 147–157.
Article
CAS
PubMed
Google Scholar
Solis-Dominguez, F.A., Valentin-Vargas, A., Chorover, J., et al., Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings, Sci.Tot. Environ., 2011, vol. 409, pp. 1009–1016.
Article
CAS
Google Scholar
Nguyen, V.K. and Lee, J.U., A comparison of microbial leaching and chemical leaching of arsenic and heavy metals from mine tailings, Biotechnol. Bioprocess Eng., 2015, vol. 20, no. 1, pp. 91–99.
Article
CAS
Google Scholar
Dong, H., Zhang, G., Jiang, H., et al., Microbial diversity in sediments of saline Qinghai Lake, China: Linking geochemical controls to microbial ecology, Microb. Ecol., 2006, vol. 51, pp. 65–82.
Article
CAS
PubMed
Google Scholar
Praharaj, T. and Fortin, D., Seasonal variations of microbial sulfate and iron reduction in alkaline Pb-Zn mine tailings (Ontario, Canada), Appl. Geochem., 2008, vol. 23, pp. 3728–3740.
Article
CAS
Google Scholar
Bondici, V.F., Khan, N.H., Swerhone, G.D.W., et al., Biogeochemical activity of microbial biofilms in the water column overlying uranium mine tailings, J. Appl. Microbiol., 2014, vol. 117, pp. 1079–1094.
Article
CAS
PubMed
Google Scholar
Khan, N.H., Bondici, V.F., Medihala, P.G., et al., Bacterial diversity and composition of an alkaline uranium mine tailings-water interface, J. Microbiol., 2013, vol. 51, pp. 558–569.
Article
CAS
PubMed
Google Scholar
Hao, C., Wang, L., Gao, Y., et al., Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China, Extremophiles, 2010, vol. 14, pp. 465–474.
Article
Google Scholar
Lindsay, M.B.J., Condon, P.D., Jambor, J.L., et al., Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage Appl. Geochem., 2009, vol. 24, pp. 2212–2221.
Article
CAS
Google Scholar
Nakatsu, C. and Hutchinson, T.C., Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism, Microb. Ecol., 1988, vol. 16, pp. 213–231.
Article
CAS
PubMed
Google Scholar
Merten, D., Kothe, E., and Büchel, G., Studies on microbial heavy metal retention from uranium mine drainage water with special emphasis on rare earth elements, Mine Water. Environ., 2004, vol. 23, pp. 34–43.
Article
CAS
Google Scholar
Guo, W., Zhao, R., Zhao, W., et al., Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings, Appl. Soil. Ecol., 2013, vol. 72, pp. 85–92.
Article
Google Scholar
Hong, C., Si, Y., Xing, Y., et al., Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas, Environ. Sci. Pollut. Res., 2015, vol. 22, pp. 10788–10799.
Article
CAS
Google Scholar
Korehi, H., Bloethe, M., and Schippers, A., Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage, Res. Microbiol., 2014, vol. 165, pp. 713–718.
Article
CAS
PubMed
Google Scholar
Pan, W.Z., Huang, X.W., Wei, K.B., et al., Diversity of thermophilic fungi in Tengchong Rehai national park revealed by ITS nucleotide sequence analyses, J. Microbiol., 2010, vol. 48, pp. 146–152.
Article
CAS
PubMed
Google Scholar
Bokulich, N.A., Subramanian, S., Faith, J.J., et al., Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing, Nat. Methods, 2013, vol. 10, pp. 57–59.
Article
CAS
PubMed
Google Scholar
Liu, J., Hua, Z.S., Chen, L.X., et al., Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings, Appl. Environ. Microbiol., 2014, vol. 80, pp. 3677–3686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, L.X., Li, J.T., Chen, Y.T., et al., Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings, Environ. Microbiol., 2013, vol. 15, pp. 2431–2444.
Article
CAS
PubMed
Google Scholar
Yao, L., Shi, J., and Miao, X., Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal, PLoS One, 2015, vol. 10, e0139117.
Ma, G., Zhang, Y., Zhang, J., et al., Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: Taking Dongting Biluochun as an example, Food Control, 2016, vol. 59, pp. 714–720.
Article
CAS
Google Scholar
Gardes, M., Bruns, T.D., ITS primers with enhanced specificity for basidiomycetes: Application to the identification of mycorrhizae and rusts, Mol. Ecol., 1993, vol. 2, pp. 113–118.
Article
CAS
PubMed
Google Scholar
Magoc, T. and Salzberg, S.L., FLASH: Fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 2011, vol. 27, pp. 2957–2963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso, J.G., Kuczynski, J., Stombaugh, J., et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 2010, vol. 7, pp. 335–336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kõljalg, U., Nilsson, R.H., Abarenkov, K., et al., Towards a unified paradigm for sequence-based identification of fungi, Mol. Ecol., 2013, vol. 22, pp. 5271–5277.
Article
CAS
PubMed
Google Scholar
Edgar, R.C., Haas, B.J., Clemente, J.C., et al., UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, 2011, vol. 27, pp. 2194–2200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, B.D., Zhu, Y.G., Duan, J., et al., Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings, Environ. Pollut., 2007, vol. 147, pp. 374–380.
Article
CAS
PubMed
Google Scholar
Liu, J., Hua, Z.S., Chen, L.X., et al., Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings, Appl. Environ. Microbiol., 2014, vol. 80, pp. 3677–3686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding, S.M., Liang, T., Zhang, Z.L., et al., Effect of rare earths on fractionation and transformation of soil available nitrogen, J. Rare Earths, 2003, vol. 21, pp. 582–586.
Google Scholar
Shoja, S.E. and Salari, M.M., Study of acid mine drainage production potential in flotation tailings of Sarcheshmeh porphyry copper mine, Arab. J. Geosci., 2015, vol. 8, pp. 8229–8236.
Article
CAS
Google Scholar
Bååth, E., Frostegård, Å., Pennanen, T., et al., Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils, Soil Biol. Biochem., 1995, vol. 27, pp. 229–240.
Article
Google Scholar
Rousk, J., Brookes, P.C., and Bååth, E., Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization, Appl. Environ. Microbiol., 2009, vol. 75, pp. 1589–1596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemmitt, S.J., Wright, D., Goulding, K.W.T., et al., pH regulation of carbon and nitrogen dynamics in two agricultural soils Soil Biol. Biochem., 2006, vol. 38, pp. 898–911.
Article
CAS
Google Scholar
Xi, Y., Sun, C., Zhang, S., et al., Effect of exchangeable ions and total acidity on corrosion of mild steel in acidic soil, Corrosion Sci. Protect. Tech., 2002, vol. 14, pp. 343–345.
CAS
Google Scholar
Cong, J., Liu, X., Lu. H., et al., Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest, BMC Microbiol., 2015, vol. 15, pp. 1–10.
Article
CAS
Google Scholar
Liu, D., Wang, Z., Influence of rare earth elements on chemical transformation of nitrogen in agricultural soil, Chinese J. Appl. Ecol., 2001, vol. 12, pp. 545–548.
Google Scholar
Elser, J.J., Andersen, T., Baron, J.S., et al., Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition, Science, 2009, vol. 326, pp. 835–837.
Article
CAS
PubMed
Google Scholar
Liu, Z., Fu, B., Zheng, X., et al., Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study, Soil Biol. Biochem., 2010, vol. 42, pp. 445–450.
Article
CAS
Google Scholar
Penuelas, J., Sardans, J., Rivas-Ubach, A., et al., The human-induced imbalance between C, N and P in Earth’s life system, Global Change Biol., 2012, vol. 18, pp. 3–6.
Article
Google Scholar
Zhu, T., Meng, T., Zhang, J., et al., Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China, Biol. Fert. Soils, 2013, vol. 49, pp. 323–331.
Article
CAS
Google Scholar
Malhi, S.S. and McGill, W.B., Nitrification in three Alberta soils: Effect of temperature, moisture and substrate concentration, Soil Biol. Biochem., 1982, vol. 14, pp. 393–399.
Article
CAS
Google Scholar
Liu, X., Zhou, J., Li., W., et al., The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure, Environ. Sci. Pollut. Res., 2014, vol. 21, pp. 6623–6631.
Article
CAS
Google Scholar
Zhao, X. and Xing, G.X., Variation in the relationship between nitrification and acidification of subtropical soils as affected by the addition of urea or ammonium sulfate, Soil Biol. Biochem., 2009, vol. 41, pp. 2584–2587.
Article
CAS
Google Scholar
Piutti, S., Slezack-Deschaumes, S., Niknahad-Gharmakher, H., et al., Relationships between the density and activity of microbial communities possessing arylsulfatase activity and soil sulfate dynamics during the decomposition of plant residues in soil, Eur. J. Soil Biol., 2015, vol. 70, pp. 88–96.
Article
CAS
Google Scholar
Zhang, Y., Zhang, J., Meng, T., et al., Heterotrophic nitrification is the predominant NO3 production pathway in acid coniferous forest soil in subtropical China, Biol. Fert. Soils, 2013, vol. 49, pp. 955–957.
Article
CAS
Google Scholar
Zhu, T., Meng, T., Zhang, J., et al., Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China, J. Soils Sediments, 2014, vol. 15, pp. 705–709.
Article
CAS
Google Scholar
Stroo, H.F., Klein, T.M., and Alexander, M., Heterotrophic nitrification in an acid forest soil and by an acid-tolerant fungus, Appl. Environ. Microbiol., 1986, vol. 52, pp. 1107–1111.
CAS
PubMed
PubMed Central
Google Scholar