Skip to main content

Funneliformis mosseae and Invasion by Exotic Legumes in a Brazilian Tropical Seasonal Dry Forest

Abstract

Parkinsonia aculeata and Prosopis juliflora are two of the most problematic invasive plant species in the Brazilian tropical seasonal dry forest, but the mechanisms driving the biological invasion of this ecosystem is virtually unknown. This study assessed the role of arbuscular mycorrhizal symbiosis, in particular of Funneliformis mosseae, on the biological invasion process by P. aculeata and P. juliflora. F. mosseae is a cosmopolitan arbuscular mycorrhizal fungus (AMF) frequently found in association with plants of different regions of the world. The present study was conducted to determine if F. mosseae is present in the soils from two invaded areas by P. aculeata and P. juliflora and to evaluate its contribution to the growth of these invasive plant species. Firstly, AMF colonization and AMF spore abundance was assessed in the roots and rhizosphere of both species in the field. Spores of F. mosseae were obtained from the soil samples and used to set up a greenhouse experiment to evaluate its effect on plant dry biomass and plant phosphorus concentration for both exotic plant species. We found that F. mosseae inoculation promoted the growth of the invaders and lead to a higher P concentration. Our results demonstrate that (a) AMF play an important role in the biological invasion process of the Brazilian tropical seasonal dry forest by P. aculeata and P. juliflora and (b) F. mosseae might be an important AMF species during the biological invasion process.

This is a preview of subscription content, access via your institution.

References

  1. Souza, T.A.F., Rodriguez-Echeverria, S., Andrade, L.A., and Freitas, H., Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil?, Acta Bot. Brasil., 2016, vol. 30, no.1, pp. 93–101. doi 10.1590/0102-3306201abb0190

    Article  Google Scholar 

  2. Kivlin, S.N. and Hawkes, C.V., Differentiating between effects of invasion and diversity: Impacts of aboveground plant communities on belowground fungal communities, New Phytol., 2011, vol. 189, pp. 526–535.

    Article  PubMed  Google Scholar 

  3. Richardson, D.M., Allsopp, N., D’Antonio, C.M., Milton, S.J., and Rejmánek, M., Plant invasions: The role of mutualisms, Biol. Rev. Camb. Philos. Soc., 2000, vol. 75, no. 1, pp. 65–93.

    Article  CAS  PubMed  Google Scholar 

  4. Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, London: Academic, 2011.

    Google Scholar 

  5. Hodge, A. and Storer, K., Arbuscular mycorrhizal and nitrogen: Implications for individual plants through to ecosystems, Plant Soil, 2014, vol. 386, pp. 1–19.

    Article  CAS  Google Scholar 

  6. Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J., The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility, Biol. Fertil. Soils, 2003, vol. 37, pp. 1–16.

    Google Scholar 

  7. Zhang, Q., Yang, R., Tang, J., Yang, H., Hu, S., and Chen, X., Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion, PLoS One, 2010, vol. 5, e12380. doi 10.1371/journal.pone.0012380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Qarawi, A.A., Mridha, M.A.U., and Dhar, P.P., Report of Funneliformis mosseae (Nicol. & Gerd.) Gerd. and Trappe from rangeland soil of Saudi Arabia, Res. J. Biotechnol., 2013, vol. 8, pp. 96–99.

    Google Scholar 

  9. Cresco Flores, G., Ramírez, J.F., González, P.J., and Hernández, I., Co-inoculation of rhizobium strains and one of the arbuscular mycorrhizal fungus on Stylosanthes guianensis cv. CIAT-184, Cuban J. Agric. Sci., 2014, vol. 48, pp. 297–300.

    Google Scholar 

  10. Lima, R.L.F.A., Salcedo, I.H., and Fraga, V.S., Propágulos de fungos micorrízicos arbusculares em solos deficientes em fósforo sob diferentes usos, da região semiárida no Nordeste do Brasil. Rev. Bras. Ciênc. Solo, 2007, vol. 31, pp. 257–268.

    Article  Google Scholar 

  11. Mergulhão, A.C.E.S., Oliveira, J.P., Burity, H.A., and Maia, L.C., Potencial de infectividade de fungos micorrízicos arbusculares em áreas nativas e impactadas por mineração gesseira no semiárido brasileiro, Hoehnea, 2007, vol. 34, pp. 341–348.

    Article  Google Scholar 

  12. Silva, L.X., Figueiredo, M.V.B., Silva, G.A., Goto, B.T., Oliveira, J.P., and Burity, H.A., Fungos micorrízicos arbusculares em áreas de plantio de Leucena e Sabiá no estado de Pernambuco. Rev. Árvore, 2007, vol. 31, pp. 427–435.

    Article  Google Scholar 

  13. Souza, T.A.F., Handbook of Arbuscular Mycorrhizal Fungi, Springer, 2015.

    Google Scholar 

  14. Andrade, L.A., Fabricante, J.R., and Oliveira, F.X., Invasão biológica por Prosopis juliflora (Sw.) DC.: Impactos sobre a diversidade e a estrutura do componente arbustivo-arbóreo da caatinga no estado do Rio Grande do Norte, Brasil, Acta Bot. Bras., 2009, vol. 23, pp. 935–943.

    Article  Google Scholar 

  15. Agrawal, A.A., Kotanen, P.M., Mitchell, C.E., Power, A.G., Godsoe, W., and Klironomos, J., Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies, Ecology, 2005, vol. 86, pp. 2979–2989.

    Article  Google Scholar 

  16. Kulmatiski, A. and Kardol, P., Getting plant–soil feedbacks out of the greenhouse: Experimental and conceptual approaches, in Progress in Botany, vol. 69, Lüttge, U., Beyschlag, W., and Murata, J., Eds., Berlin: Springer, 2008, pp. 449–472.

    Chapter  Google Scholar 

  17. Fortin, M. and Dale, M.R., Spatial Analysis: A Guide for Ecologists, Cambridge: Cambridge Univ. Press, 2005.

    Google Scholar 

  18. Silva, I.R.S., Mello, C.M.A., Ferreira Neto, R.A., et al., Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid, Appl. Soil Ecol., 2014, vol. 84, pp. 166–175.

    Article  Google Scholar 

  19. IUSS Working Group, World Reference Base for Soil Resources 200, World Soil Resources Reports, no 103, Rome: FAO, 2006.

  20. Black, C.A., Methods of Soil Analysis, part 2, Agronomy Monograph no. 9, Black, C.A., Ed., Madison, WI: American Society of Agronomy, 1965, pp. 771–1572.

    Google Scholar 

  21. Okalebo, J.R., Gathua, K.W., and Woomer, P.L., Laboratory Methods of Plant and Soil Analysis: A Working Manual, Technical Bulletin no. 1, Soil Science Society of East Africa, 1993.

    Google Scholar 

  22. Olsen, S.R., Cole, C.V., Watanable, F.S., and Dean, L.A., Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate, US Department of Agriculture Circular 939, Washington, DC, 1954.

    Google Scholar 

  23. Gerdemann, J.W. and Nicolson, T.H., Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting, Trans. Br. Mycol. Soc., 1963, vol. 1, pp. 43–66.

    Google Scholar 

  24. Jenkins, W.R., A rapid centrifugal flotation technique for separating nematodes from soil, Plant Dis. Rep., 1964, vol. 48, p. 692.

    Google Scholar 

  25. Schenck, N.C. and Perez, Y., Manual for the Identification of VA Mycorrhizal Fungi, 2nd ed., Gainesville, FL: International Culture Collection of VA Mycorrhizal Fungi (INVAM), Univ. of Florida, 1987.

    Google Scholar 

  26. Oehl, F., Souza, F.A., and Sieverding, E., Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes, Mycotaxon, 2008, vol. 106, pp. 311–360.

    Google Scholar 

  27. Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., and Silva, G.A., Advances in Glomeromycota taxonomy and classification, IMA Fungus, 2011, vol. 2, pp. 191–199.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sieverding, E., Silva, G.A., Berndt, R., and Oehl, F., Rhizoglomus, a new genus of the Glomeraceae, Mycotaxon, 2014, vol. 129, pp. 373–386.

    Article  Google Scholar 

  29. McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L., and Swan, J.A., A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi, New Phytol., 1990, vol. 115, pp. 495–501.

    Article  PubMed  Google Scholar 

  30. Habte, M. and Osorio, N.W., Arbuscular Mycorrhizas: Producing and Applying Arbuscular Mycorrhizal Inoculum, Honolulu: Univ. of Hawaii Press, 2001.

    Google Scholar 

  31. Hoagland, D.R. and Arnon, D.I., The Water-Culture Method for Growing Plant Without Soil, California Agricultural Experiment Station Circular 347, Berkeley, CA: College of Agriculture, Univ. of California, 1939.

    Google Scholar 

  32. Giovannetti, M. and Mosse, B., An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots, New Phytol., 1980, vol. 84, pp. 489–500.

    Article  Google Scholar 

  33. Jackson, M.L., Estimation of Phosphorous Content. Soil Chemical Analysis, New Delhi, Printer Hall Inc., 1973.

    Google Scholar 

  34. Kovach, W.L., MVSP: A Multivariate Statistical Package for Windows, v. 3.1, Pentraeth, Wales, UK: Kovach Computing Services, 2007.

    Google Scholar 

  35. Panwar, J. and Tarafdar, J.C., Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia (Roxb.) Korth. in Thar Desert, Appl. Soil Ecol., 2006, vol. 34, pp. 200–208.

    Article  Google Scholar 

  36. Rodríguez-Echeverría S., Hol, W.H.G., Freitas, H., Eason, W.R., and Cook, R., Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: Spore abundance and root colonization in six locations of the European coast, Eur. J. Soil Biol., 2008, vol. 44, pp. 30–46.

    Article  Google Scholar 

  37. Singh, S.S., Tiwari, S.C., and Dkhar, M.S., Species diversity of vesicular-arbuscular mycorrhizal (VAM) fungi in Jhum Fallow and natural forest soils of Arunachal Pradesh, Northeastern India, Trop. Ecol., 2003, vol. 44, pp. 207–215.

    Google Scholar 

  38. Moora, M., Berger, S., Davison, J., Öpik, M., Bommarco, R., Bruelheide, H., Kühn, I., Kunin, W.E., Metsis, M., Rortais, A., Vanatoa, A., Vanatoa, E., Stout, J.C., Truusa, M., Westphal, C., et al., Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: Evidence from a continentalscale study using massively parallel 454 sequencing, J. Biogeogr., 2011, vol. 38, pp. 1305–1317.

    Article  Google Scholar 

  39. Shah, M.A., Reshi, Z.A., and Khasa, D.P., Arbuscular mycorrhizas: Drivers or passengers of alien plant invasion, Bot. Rev., 2009, vol. 75, pp. 397–417.

    Article  Google Scholar 

  40. Antoniolli, Z.I., Facelli, E., O’Connor, P., Miller, D., Ophel-Keller, K., and Smith, S.E., Spore communities of arbuscular mycorrhizal fungi and mycorrhizal associations in different ecosystems, South Australia, Rev. Bras. Ciênc. Solo, 2002, vol. 26, pp. 627–635.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tancredo Augusto Feitosa de Souza.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feitosa de Souza, T.A., Rodriguez-Echeverria, S., Freitas, H. et al. Funneliformis mosseae and Invasion by Exotic Legumes in a Brazilian Tropical Seasonal Dry Forest. Russ J Ecol 49, 500–506 (2018). https://doi.org/10.1134/S1067413618060127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413618060127

Keywords

  • AMF inoculation
  • biological invasion
  • drylands
  • legumes
  • Glomeromycota
  • Funneliformis mosseae