Skip to main content

The Intensity of Wildfires in Fire Emissions Estimates

Abstract

A method for estimating direct wildfire emissions that considers fire intensity based on infrared radiation data from the Terra/MODIS satellite is proposed. In Siberia, we experimentally established that low intensity fires cover 47 ± 13% of the total area; that with moderate intensity, 42 ± 10%; and that with high-intensity, 10 ± 6%. The average value of wildfire emissions in Siberia is estimated at 83 ± 21 Тg С/yr (2002–2016), which is considerably lower than the values determined by standard procedure (112 ± 25 Тg С/yr). Based on the trend of long-term dynamics of fire emissions in Siberia, a probable level of emissions in 2100 is calculated when implementing climate scenarios RCP2.6, RCP4.0, and RCP8.5 (220, 700, and 2300 Тg С/yr, respectively).

This is a preview of subscription content, access via your institution.

References

  1. Bartalev, S.A., Stytsenko, F.V., Egorov, V.A., and Lupyan, E.A., Satellite assessment of forest loss due to wildfires in Russia, Lesovedenie, 2015, no. 2, pp. 83–94.

    Google Scholar 

  2. Kharuk, V.I. and Ponomarev, E.I., Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia, Russ. J. Ecol., 2017, vol. 48, no. 6, pp. 507–512. doi 10.1134/S1067413617060042

    Article  Google Scholar 

  3. Soja, A.J., Cofer, W.R., Shugart, H.H., et al., Estimating fire emissions and disparities in boreal Siberia (1998–2002), J. Geophys. Res., 2004, vol. 109, pp. 1–22. doi 10.1029/2004JD004570

    Article  Google Scholar 

  4. Shvidenko, A.Z., Shchepashchenko, D.G., Vaganov, E.A., et al., Impact of wildfires in Russia (1998–2010) on ecosystems and global carbon budget, Dokl. Akad. Nauk, 2011, vol. 441, no. 4, pp. 544–548.

    Google Scholar 

  5. Zamolodchikov, D.G., Grabovskii, V.I., and Kraev, G.N., Dynamics of carbon budget in Russian forests over the past two decades, Lesovedenie, 2011, no. 6, pp. 16–28.

    Google Scholar 

  6. Smirnov, N.S., Korotkov, V.N., and Romanovskaya, A.A., Black carbon emissions from wildfires in forest lands of the Russian Federation in 2007 to 2012, Meteorol. Gidrol., 2015, no. 7, pp. 5–17.

    Google Scholar 

  7. Amiro, B., Cantin, A., Flannigan, M., and de Groot, W., Future emissions from Canadian boreal forest fires, Can. J. For. Res., 2009, vol. 39, p. 1139.

    Article  CAS  Google Scholar 

  8. Ivanova, G.A., Ivanov, V.A., Kukavskaya, E.A., et al., Effect of fires in carbon emissions from pine forests of Central Siberia, Sib. Ekol. Zh., 2007, vol. 14, no. 6, pp. 885–895.

    Google Scholar 

  9. Baldocchi, D., Chu, H., and Reichstein, M., Interannual variability of net and gross ecosystem carbon fluxes: A review, Agric. Forest Meteorol., 2018, vol. 249, pp. 520–533. https://doi.org/10.1016/j.agrformet.2017.05.015

    Article  Google Scholar 

  10. Kukavskaya, E., Soja, A., Petkov, A., et al., Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption, Can. J. Forest Res., 2013, vol. 43, no. 5, pp. 493–506. doi 10.1139/cjfr-2012-0367

    Article  CAS  Google Scholar 

  11. Bondur, V.G., Gordo, K.A., and Kladov, V.L., Spatiotemporal distribution patterns of wildfire areas and emissions of carbon-containing gases and aerosols in Northern Eurasia according to satellite monitoring data, Issled. Zemli Kosmosa, 2016, no. 6, pp. 3–20. doi 10.7868/S0205961416060105

    Google Scholar 

  12. Ichoku, C. and Kaufman, Y.J., A method to derive smoke emission rates from MODIS fire radiative energy measurements, IEEE Trans. Geosci. Remote Sens., 2005, vol. 43, pp. 2636–2649.

    Article  Google Scholar 

  13. Ponomarev, E.I., Shvetsov, E.G., and Usataya, Yu.O., Recording energy characteristics of fires in Siberian forests by remote sensing methods, Issled. Zemli Kosmosa, 2017, no. 4, pp. 3–11. doi 10.7868/S0205961417040017

    Google Scholar 

  14. Wooster, M.J., Roberts, G., Perry, G.L.W., and Kaufman, Y.J., Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, J. Geophys. Res., 2005, vol. 110, pp. 1–24. doi 10.1029/2005JD006318

    Article  Google Scholar 

  15. Kumar, S.S., Roy, D.P., Boschetti, L., and Kremens, R., Exploiting the power law distribution properties of satellite fire radiative power retrievals: A method to estimate fire radiative energy and biomass burned from sparse satellite observations, J. Geophys. Res., 2011, vol. 116, pp. 1–18. doi 10.1029/2011JD0156761029

    Google Scholar 

  16. Volokitina, A.V. and Sofronov, M.A., Klassifikatsiya i kartografirovanie rastitel’nykh goryuchikh materialov (Classification and Mapping of Combustible Plant Materials), Novosibirsk: Sib. Otd. Ross, Akad. Nauk, 2002.

    Google Scholar 

  17. Tsvetkov, P.A., Adaptation of Dahurian larch to fires in the middle taiga zone of Central Siberia, Sib. Ekol. Zh., 2005, no. 1, pp. 117–129.

    Google Scholar 

  18. de Groot, W.J., Cantin, A.S., Flannigan, M.D., et al., A comparison of Canadian and Russian boreal forest fire regimes, For. Ecol. Manag, 2013, vol. 294, pp. 23–34. doi 10.1016/j.foreco.2012.07.033

    Article  Google Scholar 

  19. Seiler, W. and Crutzen, P.J., Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning, Climatic Change, 1980, vol. 2, no. 3, pp. 207–247. https://doi.org/10.1007/BF00137988

    Article  CAS  Google Scholar 

  20. Glagolev, M.V. and Sabrekov, A.F., A reply to A.V. Smagin: 2. Carbon balance in Russia, Environ. Dynam. Global Climate Change, 2014, vol. 5, no. 2, pp. 50–70. http://dx.doi.org/10.17816/edgcc5250-70

    Article  Google Scholar 

  21. Ponomarev, E.I., Kharuk, V.I., and Ranson, K.J., Wildfires dynamics in Siberian larch forests, Forests, 2016, vol. 7, no. 6, p. 3390.

    Google Scholar 

  22. Conard, S.G., Sukhinin, A.I., Stocks, B.J., et al., Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia, Climatic Change, 2002, vol. 55, no. 1–2, pp. 197–211.

    Article  CAS  Google Scholar 

  23. Kasischke, E.S. and Bruhwiler, L.P., Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998, J. Geophys. Res., 2003, vol. 108, pp. 1–16. doi 10.1029/2001JD000461

    Google Scholar 

  24. Ponomarev, E.I., Radiative power of wildfires in Siberia on the basis of TERRA/Modis imagery processing, Folia For. Pol., Ser. A, 2013, vol. 55, no. 2, pp. 102–110. doi 10.2478/ffp-2013-00011

    Google Scholar 

  25. Kharuk, V.I., Dvinskaya, M.L., Petrov, I.A., et al., Larch forests of Middle Siberia: Long-term trends in fire return intervals, Reg. Env. Change, 2016, vol. 16, pp. 2389–2397. doi 10.1007/s10113-016-0964-9

    Article  Google Scholar 

  26. Ponomarev, E.I. and Kharuk, V.I., Wildfire occurrence in forests of the Altai–Sayan region under current climate changes, Contemp. Probl. Ecol., 2016, vol. 9, no. 1, pp. 29–36. doi 10.1134/S199542551601011X

    Article  Google Scholar 

  27. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes, Report of the Intergovernmental Panel on Climate Change, Field, C.B., Barros, V., Dokken, D.J., Eds., Geneva: World Meteorological Organization, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Ponomarev.

Additional information

Original Russian Text © E.I. Ponomarev, E.G. Shvetsov, V.I. Kharuk, 2018, published in Ekologiya, 2018, No. 6, pp. 440–447.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ponomarev, E.I., Shvetsov, E.G. & Kharuk, V.I. The Intensity of Wildfires in Fire Emissions Estimates. Russ J Ecol 49, 492–499 (2018). https://doi.org/10.1134/S1067413618060097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413618060097

Keywords

  • wildfires
  • remote sensing
  • fire radiative power
  • fire emissions
  • wildfire monitoring
  • fire intensity