Russian Journal of Ecology

, Volume 49, Issue 5, pp 428–433 | Cite as

Experimental Study of Effects of Bivalve Dreissena polymorpha on Phytoplankton under Eutrophic Conditions

  • E. G. SakharovaEmail author
  • A. V. Krylov
  • V. G. Petrosyan
  • D. G. Seleznev
  • I. Kostshevska-Shlakovska
  • I. Yu. Feniova
  • M. Rzepecki
  • N. S. Zilitinkevich


The bivalve Dreissena polymorpha (Pallas, 1771) was shown to significantly decrease the biomass of cyanoprokaryotes in water collected from Lake Mikolajskoe (Poland) including potentially toxic species Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju. However, the mollusks increased the biomass of large filaments of green algae which are of low nutritional quality for zooplankton.


Dreissena polymorpha phytoplankton cyanoprokaryotes Cylindrospermopsis raciborskii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones, C.G., Lawton, J.H., and Shachak, M., Positive and negative effects of organisms as physical ecosystem engineers, Ecology, 1997, vol. 78, pp. 1946–1957.CrossRefGoogle Scholar
  2. 2.
    Strayer, D.L., Caraco, N.F., Cole, J.J., et al., Transformation of ecosystems by bivalves, BioScience, 1999, vol. 49, pp. 19–27.CrossRefGoogle Scholar
  3. 3.
    Newell, R.I.E., Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review, J. Shellfish Res., 2004, vol. 23, no. 1, pp. 51–61.Google Scholar
  4. 4.
    Ten Winkel, E.H. and Davids, C., Food selection by Dreissena polymorpha Pallas (Mollusca: Bivalvia) (Cryptomonas), Freshw. Biol., 1982, no. 12, pp. 553–558.CrossRefGoogle Scholar
  5. 5.
    Thorp, J.H. and Casper, A.F., Importance of biotic interactions in large rivers: An experiment with planktivorous fish, dreissenid mussels, and zooplankton in the St. Lawrence, River Res. Appl., 2003, vol. 19, no. 3, pp. 265–279.CrossRefGoogle Scholar
  6. 6.
    Dzialowski, A.R. and Jessie, W., Zebra mussels negate or mask the increasing effects of nutrient enrichment on algal biomass: A preliminary mesocosm study, J. Plankton Res., 2009, vol. 31, pp. 1437–1440.CrossRefGoogle Scholar
  7. 7.
    Smith, T.E., Stevenson, R.J., Caraco, N.F., and Cole, J.J., Changes in phytoplankton community structure during the zebra mussel (Dreissena polymorpha) invasion of the Hudson River (New York), J. Plankton Res., 1998, vol. 20, pp. 1567–1579.CrossRefGoogle Scholar
  8. 8.
    Makarewicz, J.C., Lewis, T.W., and Bertram, P., Phytoplankton composition and biomass in the offshore waters of Lake Erie: Pre-and post-Dreissena introduction (1983–1993), J. Great Lakes Res., 1999, vol. 25, pp. 135–148.CrossRefGoogle Scholar
  9. 9.
    Feniova, I., Dawidowicz, P., Gladyshev, M.I., et al., Experimental effects of large-bodied Daphnia, fish and zebra mussels on cladoceran community and size structure, J. Plankton Res., 2015, vol. 37, pp. 611–625.CrossRefGoogle Scholar
  10. 10.
    Holland, R.E., Changes in planktonic diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel, J. Great Lakes Res., 1993, vol. 19, no. 3, pp. 617–624.Google Scholar
  11. 11.
    Zhu, B., Fitzgerald, D.G., Mayer, C.M., et al., Alteration of ecosystem function by zebra mussels in Oneida Lake: Impacts on submerged macrophytes, Ecosystems, 2006, vol. 9, no. 6, pp. 1017–1028.CrossRefGoogle Scholar
  12. 12.
    Lowe, R.L. and Pillsbury, R.W., Shifts in benthic algal community structure and function following the appearance of zebra mussels (Dreissena polymorpha) in Saginaw Bay, Lake Huron, J. Great Lakes Res., 1995, vol. 21, no. 4, pp. 558–566.CrossRefGoogle Scholar
  13. 13.
    Yu, N. and Culver, D.A., Can zebra mussels change stratification patterns in a small reservoir?, Hydrobiologia, 2000, vol. 431, pp. 175–184.CrossRefGoogle Scholar
  14. 14.
    Pillsbury, R.W., Lowe, R.L., Pan, Y.D., and Greenwood, J.L., Changes in the benthic algal community and nutrient limitation in Saginaw Bay, Lake Huron, during the invasion of the zebra mussel (Dreissena polymorpha), J. N. Am. Benthol. Soc., 2002, vol. 21, no. 2, pp. 238–252.Google Scholar
  15. 15.
    Conroy, J.D. and Culver, D.A., Do dreissenids affect Lake Erie ecosystem stability processes?, Am. Midl. Nat., 2005, vol. 153, pp. 20–32.CrossRefGoogle Scholar
  16. 16.
    Komárek, J. and Kling, H., Variation in six planktonic cyanophyte genera in Lake Victoria (East Africa), Algol. Stud., 1991, vol. 61, pp. 21–45.Google Scholar
  17. 17.
    Bouvy, M., Falcão, D., Marinho, M., et al., Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought, Aquat. Microb. Ecol., 2000, vol. 23, no. 1, pp. 13–27.CrossRefGoogle Scholar
  18. 18.
    Babanazarova, O.V., Sidelev, S.I., and Fastner, D., Expansion of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) to northern latitudes: A population outbreak in shallow, highly eutrophic Nero Lake, Russia, Al’gologiya, 2014, vol. 24, no. 4, pp. 526–537.Google Scholar
  19. 19.
    Bernard, C., Harvey, M., Briand, J.F., et al., Toxicological comparison of diverse Cylindrospermopsis raciborskii strains: Evidence of liver damage caused by French C. raciborskii strain, Environ. Toxicol., 2003, vol. 18, no. 3, pp. 176–186.CrossRefPubMedGoogle Scholar
  20. 20.
    Raikow, D.F., Sarnelle, O., Wilson, A.E., and Hamilton, S.K., Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels, Limnol. Oceanogr., 2004, vol. 49, no. 2, pp. 482–487.CrossRefGoogle Scholar
  21. 21.
    Sinicyna, O.O. and Zdanowski, B., Development of the zebra mussel, Dreissena polymorpha (Pall.), population in a heated lakes ecosystem: 2. Life strategy, Arch. Pol. Fish., 2007, vol. 15, pp. 387–400.Google Scholar
  22. 22.
    Standard Methods for the Examination of Water and Wastewater, Washington, DC: American Public Health Association, 2005.Google Scholar
  23. 23.
    Balushkina, E.V. and Vinberg, G.G., The relationship between body length and width in planktonic crustaceans and rotifers, in Ekologo-fiziologicheskie osnovy izucheniya vodnykh ekosistem (Ecophysiological Principles of Studies on Aquatic Ecosystems), Leningrad: Nauka, 1979, pp. 169–172.Google Scholar
  24. 24.
    Petrosyan, V.G., Biosystem Office: An Integrated System for Database Management and Statistical Analysis of Biological Data.
  25. 25.
    Rücker, J., Wiedner, C., and Zippel, P., Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes, Hydrobiologia, 1997, vol. 342, pp. 107–115.CrossRefGoogle Scholar
  26. 26.
    Shaw, G.R., Moore, D.P., and Garnett, C., Eutrophication and algal blooms, Environ. Ecol. Chem., 2003, vol. 2, pp. 1–21.Google Scholar
  27. 27.
    Babanazarova, O.V., Kurmayer, R., Sidelev, S.I., et al., Phytoplankton structure and microcystine concentration in the highly eutrophic Nero Lake, Water Resour., 2011, vol. 38, no. 2, pp. 229–236.CrossRefGoogle Scholar
  28. 28.
    Ahlgren, G., Lundstedt, L., Brett, M., and Forsberg, C., Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters, J. Plankton Res., 1990, vol. 12, no. 4, pp. 809–818.CrossRefGoogle Scholar
  29. 29.
    Bastviken, D.T.E., Caraco, N.F., and Cole, J.J., Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition, Freshw. Biol., 1998, vol. 39, no. 2, pp. 375–386.CrossRefGoogle Scholar
  30. 30.
    Wilson, A.E., Effects of zebra mussels on phytoplankton and ciliates: A field mesocosm experiment, J. Plankton Res., 2003, vol. 25, pp. 905–915.CrossRefGoogle Scholar
  31. 31.
    Wojtal-Frankiewicz, A. and Frankiewicz, P., The impact of pelagic (Daphnia longispina) and benthic (Dreissena polymorpha) filter feeders on chlorophyll and nutrient concentration, Limnologica, 2011, vol. 41, pp. 191–200.CrossRefGoogle Scholar
  32. 32.
    Sarnelle, O., White, J.D., Horst, G.P., and Hamilton, S.K., Phosphorus addition reverses the positive effect of zebra mussels (Dreissena polymorpha) on the toxic cyanobacterium, Microcystis aeruginosa, Water Res., 2012, vol. 46, no. 11, pp. 3471–3478.CrossRefPubMedGoogle Scholar
  33. 33.
    Baker, S.M., Levinton, J.S., Kurdziel, J.P., and Shumway, S.E., Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston load, J. Shellfish Res., 1998, vol. 17, no. 4, pp. 1207–1213.Google Scholar
  34. 34.
    Klerks, P.L., Fraleigt, P.C., and Lawniczak, J.E., Effects of zebra mussels (Dreissena polymorpha) on seston levels and sediment deposition in western Lake Erie, Can. J. Fish. Aquat. Sci., 1996, vol. 53, no. 10, pp. 2284–2291.CrossRefGoogle Scholar
  35. 35.
    Gardner, W.S., Cavaletto, J.F., Johengen, T.H., et al., Effects of the zebra mussel, Dreissena polymorpha, on community nitrogen dynamics in Saginaw Bay, Lake Huron, J. Great Lakes Res., 1995, vol. 21, no. 24, pp. 529–544.Google Scholar
  36. 36.
    Schindler, D.W., Hecky, R.E., Findlay, D.L., et al., Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 32, pp. 11254–11258.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Karatayev, A.Y., Burlakova, L.E., and Padilla, D.K., Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers, in Invasive Aquatic Species of Europe: Distribution, Impacts and Management, Springer Netherlands, 2002, pp. 433–446.Google Scholar
  38. 38.
    Davies, J.M. and Hecky, R.E., Initial measurements of benthic photosynthesis and respiration in Lake Eerie, J. Great Lakes Res., 2005, vol. 31, pp. 195–207.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. G. Sakharova
    • 1
    Email author
  • A. V. Krylov
    • 1
  • V. G. Petrosyan
    • 2
  • D. G. Seleznev
    • 1
  • I. Kostshevska-Shlakovska
    • 3
  • I. Yu. Feniova
    • 2
  • M. Rzepecki
    • 4
  • N. S. Zilitinkevich
    • 5
  1. 1.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia
  2. 2.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of BiologyUniversity of WarsawWarsawPoland
  4. 4.Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
  5. 5.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations