Skip to main content

The Occurrence of Carpinus, Fagus, Tilia, and Quercus Pollen in Subrecent Spore–Pollen Spectra from the East European Plain: On the Possibility of Long-Distance Pollen Transfer

Abstract

Subrecent spore–pollen spectra have been analyzed for the occurrence Carpinus, Fagus, Tilia, and Quercus pollen in the East European Plain to evaluate the possibility of long-distance pollen transfer. Analysis was based on the material from the Russian Palynological Database on 250 points in different regions of European Russia and neighboring countries and on data from published sources. Pollen of oak, linden, and hornbeam has been found in surface samples taken within the natural ranges of these species and in regions of their introduction, with linden and oak pollen being transferred by air for several tens of kilometers, and hornbeam pollen, for about 200 km. Beech pollen can be transferred by wind for long distances, and its presence in spectra has been recorded farther than 1000 km from the species range boundaries. The proportion of components transferred from long distances increases in spore–pollen spectra from regions with sparse or poorly developed plant cover, and single occurrences of broadleaf tree pollen are also possible in such regions.

This is a preview of subscription content, access via your institution.

References

  1. Grichuk, V.P. and Zaklinskaya, E.D., Analiz iskopaemoi pyl’tsy i spor i ego primenenie v paleogeografii (Analysis of Fossil Pollen and Spores and Its Applications in Paleogeography), Moscow: Geografgiz, 1948.

    Google Scholar 

  2. Mal’gina, E.A., Experience in comparing the distribution of pollen of some tree species with their ranges within the European part of the Soviet Union, Tr. Inst. Geogr. Akad. Nauk SSSR, 1950, vol. 46, no. 3, pp. 42–50.

    Google Scholar 

  3. Mal’gina, E.A., On interpretation of the results of palynological analysis of Central Asian Quaternary deposits, in Znachenie palinologicheskogo analiza dlya stratigrafii i paleofloristiki (Palynological Analysis: Significance for Stratigraphy and Paleofloristics), Moscow: Nauka, 1968, no. 3, pp. 256–262.

    Google Scholar 

  4. Fedorova, R.V., Qualitative patterns of tree pollen dispersal by air currents, Tr. Inst. Geogr. Akad. Nauk SSSR, 1952, vol. 52, pp. 91–103.

    Google Scholar 

  5. Fedorova, R.V., Some methodological of palynological analysis and their significance for interpretation of spore–pollen spectra, in Sistematika i metody izucheniya iskopaemykh pyl’tsy i spor (Systematics and Methods of Study of Fossil Pollen and Spores), Moscow: Nauka, 1964, pp. 148–158.

    Google Scholar 

  6. Kabailene, M.V., Formation of pollen spectra and methods for reconstructing paleovegetation, Tr. Inst. Geol. (Vilnius), 1969, vol. 11, pp. 70–147.

    Google Scholar 

  7. Petrenko, T.I., Mikishin, Yu.A., and Belyanina, N.I., Subfossil spore–pollen assemblages in the Khankan Lowland, Primorye, Estestv. Tekh. Nauki, 2009, no. 4, pp. 162–171.

    Google Scholar 

  8. Ryabogina, N.E. and Yakimov, A.S., Palynological and paleopedological studies in archaeological sites: Analysis of possibilities and methods of work, Vestn. Arkheol. Antropol. Etnogr., 2010, no. 2, pp. 186–200.

    Google Scholar 

  9. Novenko, E.Yu., Nosova, M.B., and Krasnorutskaya, K.V., Specific features of surface spore–pollen spectra in the southern taiga subzone of the East European Plain, Izv. Tul’sk. Gos. Univ., Ser. Estestv. Nauki, 2011, no. 2, pp. 345–354.

    Google Scholar 

  10. Lapteva, E.G., Subfossil spore–pollen spectra of recent vegetation in the Southern Urals, Vestn. Bashkir. Gos. Univ., 2013, vol. 18, no. 1, pp. 77–81.

    Google Scholar 

  11. Lisitsyna, O.V., Giesecke, T., and Hicks, S., Exploring pollen percentage threshold values as an indication for the regional presence of major European trees, Rev. Palaeobot. Palynol., 2011, vol. 166, pp. 311–324.

    Article  Google Scholar 

  12. Neishtadt, M.I., Istoriya lesov i paleogeografiya SSSR v golotsene (Holocene History of Forests and Paleogeography of the Soviet Union), Moscow: Akad. Nauk SSSR, 1957.

    Google Scholar 

  13. Smirnova, O.V. and Turubanova, S.A., Changes in the species composition of edificator tree species in the forest belt during the Late Pleistocene to the Late Holocene, in Vostochnoevropeiskie lesa: istoriya v golotsene i sovremennost’ (Forests of Eastern Europe: Holocene History and Current Status), Moscow: Nauka, 2004, vol. 1, pp. 118–134.

    Google Scholar 

  14. Borisova, O.K., Interpretation of palynological data with regard to the processes of spore and pollen spectrum formation, concentration, and accumulation rate, in Metody paleoekologicheskikh issledovanii: Tez. dokl. palinologicheskoi shkoly-konf. s mezhdun. uchastiem (Methods of Paleoecological Research: Abstr. Palynological School–Conference with International Participation), Velichko, A.A., Bolikhovskaya, N.S., Novenko, E.Yu., and Faustov, S.S., Eds., Moscow: Mosk. Gos. Univ., 2014, pp. 16–17.

    Google Scholar 

  15. Chepurnaya, A.A. and Novenko, E.Yu., Database of spore–pollen spectra for the territory of Russia and neighboring countries as a tool for paleoecological research, Izv. Akad. Nauk, Ser. Geogr., 2015, no. 1, pp. 119–128.

    Article  Google Scholar 

  16. Sokolov, S.Ya., Svyazeva, O.A., and Kubli, V.A., Arealy derev’ev i kustarnikov SSSR (The Ranges of Tree and Shrub Species in the Soviet Union), Leningrad: Nauka, 1977, vol. 1, pp. 114–115.

    Google Scholar 

  17. European Atlas of Forest Tree Species, Miguel-Ayanz, J., De Rigo, D., Caudullo, G., Houston Durrant, T., and Mauri, A., Eds., Luxembourg: Publication Office of the European Union, 2016.

  18. Grabovo ecosite, in Zapovednaya priroda Donbassa (Wilderness of Donbass), Didova, A.Z., Ed., Donetsk: Donbass, 1987, pp. 115–117.

  19. Grozdov, B.V., Dendrologiya (Dendrology), Moscow: Goslesbumizdat, 1952.

    Google Scholar 

  20. Gubanov, I.A., Kiseleva, K.V., Novikov, V.S., and Tikhomirov, V.N., Carpinus betulus L.–European hornbeam, in Illyustrirovannyi opredelitel' rastenii Srednei Rossii (Illustrated Identification Key to Plants of Central Russia), Moscow: KMK, 2003, vol. 2, p. 32.

    Google Scholar 

  21. Mel’nik, A.S. and Zhuravskaya, E.I., Grab (Hornbeam), Moscow: Agropromizdat, 1985.

    Google Scholar 

  22. Drevesnye rasteniya GBS im. Tsitsina RAN (Woody Plants in the Tsitsin State Botanical Garden, Russian Academy of Sciences), Moscow: KMK, 2005.

  23. Kazakova, M.V., Buchkova, A.E., Zudov, V.E., et al., On resilience of introduced woody species in Ryazan oblast, Vestn. Ryazan. Gos. Univ. im. S.A. Yesenina, 2015, no. 1, pp. 138–149.

    Google Scholar 

  24. http://flower.onego.ru/kustar/carpinus.html.

  25. www.plantarium.ru/page/view/item/9173.html.

  26. Vasyukov, V.M., Rasteniya Penzenskoi oblasti (konspekt flory) (Plants of Penza Oblast: A Synopsis of Flora), Penza: Penz. Gos. Ped. Univ., 2004.

    Google Scholar 

  27. Sokolov, S.Ya. and Stratonovich, A.I., Genus 2: Fagus–Beech, in Derev’ya i kustarniki SSSR. Dikorastushchie, kul’tiviruemye i perspektivnye dlya introduktsii (Trees and Shrubs of the Soviet Union: Wild-growing, Cultivated, and Promising for Introduction), Moscow: Akad. Nauk SSSR, 1951.

    Google Scholar 

  28. Kalutskii, K.K., Atrokhin, V.G., and Tyurikov, F.T., Drevesnye porody mira (Tree Species of the World), vol. 3: Drevesnye porody SSSR (Tree Species of the Soviet Union), Moscow: Lesnaya Promyshlennost’, 1982.

    Google Scholar 

  29. http://hbc.bas-net.by/plantae/rus/.

  30. Tret’yakov, D.I., Adventive fraction in the flora of Belarus and its formation, in Izuchenie biologicheskogo raznoobraziya metodami sravnitel’noi floristiki: Mat-ly IV rab. sov. po sravnitel’noi floristike, Berezinskii zapovednik (Studies on Biological Diversity by Methods of Comparative Floristics: Proc. IV Workshop on Comparative Floristics, Berezina Nature Reserve), St. Petersburg: S.-Peterb. Gos. Univ., 1998, pp. 250–260.

    Google Scholar 

  31. Minyaev, N.A., Orlova, N.I., and Shmidt, V.M., Opredelitel’ vysshikh rastenii Severo-Zapada evropeiskoi chasti RSFSR (Identification Key to Higher Plants of the Northwestern European Part of the Russian Federation), Leningrad: Leningr. Gos. Univ., 1981.

    Google Scholar 

  32. Vander, K.R., Introduction of the European beech (Fagus sylvatica L.) and its significance for forestry in Latvia, Extended Abstract of Cand. Sci. (Agric.) Dissertation, Jelgava, 1963.

    Google Scholar 

  33. Lavrent’ev, N.V., Firsov, G.A., and Potokin, A.F., The history of introduction and current status of Fagus sylvatica L. in the Botanical Garden of St. Petersburg Forest Engineering Academy, Vestn. OrelGAU, 2013, no. 1, pp. 58–65.

    Google Scholar 

  34. Flora Sibiri (The Flora of Siberia), vol. 10, Novosibirsk: Nauka, 1996.

  35. Gubanov, I.A., Kiseleva, K.V., Novikov, V.S., and Tikhomirov, V.N., Littleleaf linden, Tilia cordata Mill., in Illyustrirovannyi opredelitel’ rastenii Srednei Rossii (Illustrated Identification Key to Plants of Central Russia), Moscow: KMK, 2003, vol. 2, p. 548.

    Google Scholar 

  36. Krasnaya kniga Respubliki Komi: Redkie i nakhodyashchiesya pod ugrozoi ischeznoveniya vidy rastenii i zhivotnykh (Red Data Book of the Komi Republic: Rare and Endangered Plant and Animal Species), Syktyvkar, 1998.

  37. Lapteva, E.G., Yankovska, V., and Panova, N.K., Quantitative relationships between subfossil palynospectra and present-day vegetation of the Polar Urals, in Problemy sovremennoi palinologii: Mat-ly XIII Ross. palinol. konf. (Problems in Modern Palynology: Proc. XIII Russian Palynological Conference), Syktyvkar, 2011, vol. 2, pp. 263–266.

    Google Scholar 

  38. Semerikov, L.F., Populyatsionnaya struktura drevesnykh rastenii na primere vidov duba evropeiskoi chasti SSSR i Kavkaza (Population Structure of Trees: The Example of Oak Species in the European Soviet Union and the Caucasus), Moscow: Nauka, 1986.

    Google Scholar 

  39. www.plantarium.ru.

  40. Menitskii, Yu.L., A review of species of the genus Quercus L. in Eurasia, in Komarovskie chteniya (Komarov Memorial Lectures), Leningrad: Nauka, 1982, vol. 32.

  41. Denisov, A.K., Pathways of oak expansion to Siberia, Lesn. Khoz., 1951, no. 6, pp. 32–34.

    Google Scholar 

  42. Merzlenko, M.D. and Koturanov, D.L., Nasazhdeniya duba chereshchatogo v srednei polose Rossii (Pedunculate Oak Plantations in the Central Zone of Russia), Moscow: Nauka, 2008.

    Google Scholar 

  43. Red’ko, G.I. and Treshchevskii, I.V., Rukotvornye lesa (Human-made Forests), Moscow: Agropromizdat, 1986.

    Google Scholar 

  44. Komissarova, M.G., On spontaneous changes in the range of pedunculate oak (Quercus robur L.), Arct. Eviron. Res., 2013, no. 3, pp. 56–58.

    Google Scholar 

  45. Lokoshchenko, M.A., Wind directions in Moscow, Meteorol. Gidrol., 2015, no. 10, pp. 5–15.

    Google Scholar 

  46. Chupina, L.N., Tree pollen in recent spore–pollen spectra from Central Asia and Kazakhstan, in Palinologiya golotsena (Holocene Palynology), Neishtadt, M.I.], Ed., Vilnius: Pergale, 1971}, pp. 227–2

    Google Scholar 

  47. Andreev, A.A., Grosse, G., Schirrmeister, L., et al., Weichselian and Holocene palaeoenvironmental history of the Bol’shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia, Boreas, 2009, vol. 38, pp. 72–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Mazei.

Additional information

Original Russian Text © N.G. Mazei, M.V. Kusilman, E.Yu. Novenko, 2018, published in Ekologiya, 2018, No. 6, pp. 431–439.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mazei, N.G., Kusilman, M.V. & Novenko, E.Y. The Occurrence of Carpinus, Fagus, Tilia, and Quercus Pollen in Subrecent Spore–Pollen Spectra from the East European Plain: On the Possibility of Long-Distance Pollen Transfer. Russ J Ecol 49, 484–491 (2018). https://doi.org/10.1134/S1067413618050077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413618050077

Keywords

  • subrecent spore–pollen spectra
  • East European Plain
  • pollen of broadleaf tree species
  • long-distance pollen transfer