Russian Journal of Ecology

, Volume 49, Issue 3, pp 253–259 | Cite as

Ecological Groups of the Daubed Shanny Leptoclinus maculatus (Fries, 1838), an Arcto-boreal Species, Regarding Growth and Early Development

  • S. N. Pekkoeva
  • S. A. Murzina
  • E. P. Ieshko
  • Z. A. Nefedova
  • S. Falk-Petersen
  • J. Berge
  • O. Lonne
  • N. N. Nemova


The patterns of growth and development have been studied in L. maculatus early life stages of different ecological groups (pelagic and demersal) from Kongsfjorden and Billefjorden (the northwestern coast of West Spitsbergen). It has been found that the growth rate of larvae markedly increases by age 2+ (stage L2), which is due to their transition to exogenous feeding. Consideration is given to changes in the length and condition of the lipid sac (a provisory organ) in the period of its formation, growth, and resorption in the course of ontogeny. The lipid sac reaches the maximum size at stage L4* and is resorbed at stage L5. Analysis of individual variation in the size and body weight of fish early life stages provides the possibility to evaluate the adaptation capacity of a species under specific conditions of the Arctic.


fish daubed shanny Leptoclinus maculatus early ontogeny early life stages the Arctic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murzina, S.A., Role of lipids and their fatty acid components in biochemical adaptations of the daubed shanny, Leptoclinus maculatus F., from the northwestern Spitsbergen coast, Cand. Sci. (Biol.) Dissertation, Petrozavodsk, 2010.Google Scholar
  2. 2.
    Murzina, S.A., Nefedova, Z.A., and Nemova, N.N., Effect of fatty acids (markers of fish food sources) on mechanisms of adaptation to high-latitude conditions: A review, Tr. Karel. Nauch. Tsentra Ross. Akad. Nauk, Ser. Eksp. Biol., 2012, no. 2, pp. 18–25.Google Scholar
  3. 3.
    Pekkoeva, S.N., Murzina, S.A., Nefedova, Z.A., et al., Ecological role of lipids and fatty acids in the early postembryonic development of daubed shanny, Leptoclinus maculatus (Fries, 1838) from Kongsfjorden, West Spitsbergen, in winter, Russ. J. Ecol., 2017, vol. 48, no. 3, pp. 240–244.CrossRefGoogle Scholar
  4. 4.
    Falk-Petersen, S., Falk-Petersen, I.-B., and Sargent, J.R., Structure and function of an unusual lipid storage organ in the arctic fish Lumpenus maculatus Fries, 1838, Sarsia, 1986, no. 71, pp. 1–6.CrossRefGoogle Scholar
  5. 5.
    Meyer Ottesen, C.A., Haakon, H., Schou Christiansen, J., and Falk-Petersen, S., Early life history of the daubed shanny (Teleostei: Lepticlinus maculatus) in Svalbard waters, Mar. Biodiv., 2011, vol. 41, no. 3, pp. 383–394.CrossRefGoogle Scholar
  6. 6.
    Murzina, S.A., Meyer Ottesen, C.A., Falk-Petersen, S., et al., Oogenesis and lipids in gonad and liver of daubed shanny (Leptoclinus maculatus) females from Svalbard waters, Fish Physiol. Biochem., 2012, vol. 38, no. 5, pp. 1393–1407.CrossRefPubMedGoogle Scholar
  7. 7.
    Pavlov, D.A., Morfologicheskaya izmenchivost’ v rannem ontogeneze kostistykh ryb (Morphological Variation in the Early Ontogeny of Teleost Fishes), Moscow: GEOS, 2007.Google Scholar
  8. 8.
    Meyer Ottesen, C.A., Hop, H., Falk-Petersen, S., and Christiansen, J.S., Growth of daubed shanny (Tele ostei: Leptoclinus maculatus) in Svalbard waters, Polar Biol., 2014, vol. 37, pp. 809–815.CrossRefGoogle Scholar
  9. 9.
    Fahay, M.P., Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras), vol. 2: Scorpaeniformes through Tetraodontiformes, pp. 932–1696.
  10. 10.
    Mecklenburg, C.W. and Sheiko, B.A., Family Stichaeidae Gill 1864–Pricklebacks, Calif. Acad. Sci. Annotated Checklists of Fishes, 2004, no.35.Google Scholar
  11. 11.
    Pravdin, I.F., Rukovodstvo po izucheniyu ryb (A Manual of Fish Studies), Moscow: Pishchevaya Promyshlennost’, 1966.Google Scholar
  12. 12.
    Mina, M.V. and Klevezal, G.A., Rost zhivotnykh (Animal Growth), Moscow: Nauka, 1976.Google Scholar
  13. 13.
    Mina, M.V., Levin, B.A., and Mironovsky, A.N., On the possibility of using character estimates obtained by different operators in morphometric studies of fish, J. Ichthyol., 2005, vol. 45, no. 4, pp. 284–294.Google Scholar
  14. 14.
    Ivanter, E.V. and Korosov, A.V., Elementarnaya biometriya: Uchebnoe posobie (Elementary Biometry: A Textbook), Petrozavodsk: Petrozavodsk. Gos. Univ., 2010.Google Scholar
  15. 15.
    Shatunovskii, M.I., Age-related changes in the structural and energy metabolism of fishes, in Biologicheskie resursy Belogo morya i vnutrennikh vodoemov Evropeiskogo Severa: Mat-ly XXVIII mezhdun. konf. (Biologicalk Resources of the White Sea and Inland Water Bodies of Northern Europe: Proc. XXVIII Int. Conf), Petrozavodsk, 2009, pp. 631–632.Google Scholar
  16. 16.
    Flegler-Balon, C., Direct and indirect development in fishes: Examples of alternative life-history styles, in Alternative Life-History Styles of Animals, Bruton, M.N., Ed., Dordrecht: Kluwer, 1989, pp. 71–100.CrossRefGoogle Scholar
  17. 17.
    Sidelova, V.G. and Kozlova, T.A., Comparative studies on endemic cottoid fishes (Cottidae, Comephoridae) with regard to their adaptation to living in the pelagic zone of Lake Baikal, Tr. Zool. Inst. Ross. Akad. Nauk, 2010, vol. 314, no. 4, pp. 433–447.Google Scholar
  18. 18.
    Eastman, J.T. and DeVries, A.L., Ultrastructure of the lipid sac wall in the Antarctic notothenioid fish Pleuragramma antarcticum, Polar Biol., 1989, vol. 9, pp. 333–335.CrossRefGoogle Scholar
  19. 19.
    Falk-Petersen, S., Hopkins, C.C.E., and Sargent, J.R., Trophic relationships in the pelagic, arctic food web, in Proc. 24th European Marine Biology Symposium, 1990, pp. 315–333.Google Scholar
  20. 20.
    Mayzaud, P. and Falk-Petersen, S., Noyon, M., et al., Lipid composition of the three co-existing Calanus species in the Arctic: Impact of season, location and environment, Polar Biol., 2016, vol. 39, no. 10, pp. 1819–1839. doi 10.1007/s00300-015-1725-9CrossRefGoogle Scholar
  21. 21.
    Weydmann, A., Coelh, N.C., Serrao, E.A., et al., Pan-Arctic population of the keystone copepod Calanus glacialis, Polar Biol., 2016, vol. 39, no. 12, pp. 2311–2318.CrossRefGoogle Scholar
  22. 22.
    Kal’chenko, E.I., Growth and biochemical parameters of juvenile chum salmon grown on imported foods, in Sovremennye problemy fiziologii i biokhimii vodnykh organizmov: Mat-ly mezhdun. konf. Current Problems in Physiology and Biochemistry of Aquatic Organisms: Proc. Int. Conf.), Petrozavodsk, 2004, pp. 58–59.Google Scholar
  23. 23.
    Karamushko, L.I., Growth, production, metabolism, and adaptations of high-latitude marine fish, Dokl. Biol. Sci., 2014, vol. 455, pp. 116–118. doi 10.1134/S0012496614020124CrossRefPubMedGoogle Scholar
  24. 24.
    Froese, R.P., Growth strategies of fish larvae, ICES C.M. 1990/L, 1990, vol. 91, pp. 1–20.Google Scholar
  25. 25.
    Ekologo-biokhimicheskii status molodi atlanticheskogo lososya Salmo salar L. iz nekotorykh rek basseina Belogo morya (Ecological and Biochemical Status of Juvenile Atlantic Salmon, Salmo salar L., from Some Rivers of the White Sea Basin), Nemova, N.N., Ed., Petrozavodsk: Karel. Nauch. Tsentr Ross. Akad. Nauk, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Pekkoeva
    • 1
  • S. A. Murzina
    • 1
  • E. P. Ieshko
    • 1
  • Z. A. Nefedova
    • 1
  • S. Falk-Petersen
    • 2
    • 3
  • J. Berge
    • 3
    • 4
  • O. Lonne
    • 4
  • N. N. Nemova
    • 1
  1. 1.Institute of Biology, Karelian Scientific CenterRussian Academy of SciencesPetrozavodskRussia
  2. 2.Akvaplan-niva AS, Fram CentreTromsøNorway
  3. 3.The Arctic University of Norway (UiT)TromsøNorway
  4. 4.The University Centre in Svalbard (UNIS)LongyearbyenNorway

Personalised recommendations