Skip to main content

Residual Effect of Induced Water Stress and Nitrogen Addition on the Mycobiota in Scots Pine Stands

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Mycobiota (fungi, lichens and myxomycetes) was examined in permanent plots following experiments of artificial drought (D) and nitrogen addition (N) and compared with untreated forest (C), in Scots pine stand planted on Arenosols. Species diversity and relationships between fungal community structure and environmental variables (plant species numbers and cover, bryophyte cover, soil and bark pH, tree mortality) were explored. Both D and N treatments lead to decrease of fungal species in general, however, responses of individual trophic and ecological groups varied. The strongest effect of the treatments was observed for soil fungi, especially mycorrhizal: numbers of fruiting species and ectomycorrhizal root tips decreased, and species composition has changed. Saprotrophic fungi reacted by changes in species composition but not in numbers. Of the studied environmental variables, the most significant effect on mycobiota had bryophyte and vascular plant cover as well as vascular plant species numbers.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Przybyl, K., Karolewski, P., Oleksyn, J., Labedzki, A., and Reich, P.B., Fungal diversity of Norway spruce litter: Effects of site conditions and premature leaf fall caused by bark beetle outbreak, Microb. Ecol., 2008, vol. 56, pp. 332–340.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Nilsen, P., Børja, I., Knutsen, H., and Brean, R., Nitrogen and drought effects on ectomycorrhizae of Norway spruce [Picea abies L. (Karst.)], Plant Soil, 1998, vol. 198, pp. 179–184.

    Article  CAS  Google Scholar 

  3. 3.

    Wiklund, K., Nilsson, L.O., and Jacobsson, S., Effect of irrigation, fertilization, and artificial drought on basidioma production in a Norway spruce stand, Can. J. Bot., 1995, vol. 73, pp. 200–208.

    Article  Google Scholar 

  4. 4.

    Shi, L., Guttenberger, M., Kottke, I., and Hampp, R., The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi, Mycorrhiza, 2002, vol. 12, pp. 303–311.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Peay, K.G., Kennedy, P.G., and Bruns, T.D., Fungal community ecology: A hybrid beast with a molecular master, BioScience, 2008, vol. 58, pp. 799–810.

    Article  Google Scholar 

  6. 6.

    Kuyper, T.W., Die Auswirkungen von Stickstoffeinträgen auf Artengemeinschaften von Pilzen, Z. Mykol., 2013, vol. 79, pp. 565–581.

    Google Scholar 

  7. 7.

    Treseder, K.K., A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies, New Phytol., 2004, vol. 164, pp. 347–355.

    Article  Google Scholar 

  8. 8.

    Lilleskov, E.A., How do composition, structure, and function of mycorrhizal fungi communities respond to nitrogen deposition and ozone exposure, in The Fungal Community. Its Organization and Role in the Ecosystem, 3rd ed., Dighton, J., White, J.F., and Oudemans, P., Eds., Boca Raton: Taylor and Francis, 2005, pp. 769–801.

    Chapter  Google Scholar 

  9. 9.

    Thomas, S.C., Liguori, D.A., and Halpern, C.B., Corticolous bryophytes in managed Douglas-fir forests: Habitat differentiation and responses to thinning and fertilization, Can. J. Bot., 2001, vol. 79, pp. 886–896.

    Google Scholar 

  10. 10.

    Strengbom, J. and Nordin, A., Commercial forest fertilization causes long-term residual effects in ground vegetation of boreal forests, For. Ecol. Manage., 2008, vol. 256, pp. 2175–2181.

    Article  Google Scholar 

  11. 11.

    Ozolincius, R., Stakenas, V., Varnagiryte-Kabašinskiene, I., and Buožyte, R., Artificial drought in Scots pine stands: Effects on soil, ground vegetation and tree condition, Ann. Bot. Fenn., 2009, vol. 46, pp. 299–307.

    Article  Google Scholar 

  12. 12.

    Galvonaite, A., Misiuniene, M., Valiukas, D., and Buitkuviene M.S., Lietuvos klimatas (Climate of Lithuania), Vilnius: Arx Baltica, 2007.

    Google Scholar 

  13. 13.

    Härkönen, M., Corticolous myxomycetes in three different habitats in southern Finland, Karstenia, 1977, vol. 17, pp. 19–32.

    Article  Google Scholar 

  14. 14.

    Biodiversity of Fungi. Inventory and Monitoring Methods, Mueller, G.M., Bills, G.F., and Foster, M.S., Eds., Burlington: Elsevier, 2004.

  15. 15.

    Motiejunaite, J., Adamonyte, G., Iršenaite, R., Juzenas, S., Kasparavicius, J., Kutorga, E., and Markovskaja, S., Early fungal community succession following crown fire in Pinus mugo stands and surface fire in Pinus sylvestris stands, Eur. J. For. Res., 2014, vol. 133, pp. 745–756.

    Article  Google Scholar 

  16. 16.

    Sheil, D., Burslem, D.F.R.P., and Alder, D., The interpretation and misinterpretation of mortality rate measures, J. Ecol., 1995, vol. 83, pp. 331–333.

    Article  Google Scholar 

  17. 17.

    Patterson, D.W., Wiant, H.V. Jr., and Wood, G.B., Log volume estimations: The centroid method and standard formulas, J. For., 1993, vol. 91, pp. 39–41.

    Google Scholar 

  18. 18.

    McCune, B. and Mefford, M.J., PC-ORD. Multivariate Analysis of Ecological Data, Version 6.0 for Windows, 2011.

    Google Scholar 

  19. 19.

    Nohrstedt, H.O., Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences, Scand. J. For. Res., 2001, vol. 16, pp. 555–573.

    Article  Google Scholar 

  20. 20.

    Strengbom, J., Nordin, A., Näsholm, T., and Ericson, L., Slow recovery of boreal ecosystem following decreased nitrogen input, Funct. Ecol., 2001, vol. 15, pp. 451–457.

    Article  Google Scholar 

  21. 21.

    Lilleskov, E.A., Fahey, T.J., Horton, T.R., and Lovett, G.M., Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska, Ecology, 2002, vol. 83, pp. 104–115.

    Article  Google Scholar 

  22. 22.

    Lilleskov, E.A., Hobbie, E.A., and Horton, T.R., Conservation of ectomycorrhizal fungi: Exploring the linkages between functional and taxonomic responses to anthropogenic N deposition, Fungal Ecol., 2011, vol. 4, pp. 174–183.

    Article  Google Scholar 

  23. 23.

    Tarvainen, O., Markkola, A.M., and Strömmer, R., Diversity of macrofungi and plants in Scots pine forests along an urban pollution gradient, Basic Appl. Ecol., 2003, vol. 4, pp. 547–556.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jurga Motiejūnaitė.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Motiejūnaitė, J., Buožytė, R., Adamonytė, G. et al. Residual Effect of Induced Water Stress and Nitrogen Addition on the Mycobiota in Scots Pine Stands. Russ J Ecol 49, 226–231 (2018). https://doi.org/10.1134/S1067413618030050

Download citation

Keywords

  • fungi
  • lichens
  • myxomycetes
  • ectomycorrhizal root tips
  • artificial drought
  • nitrogen fertilization experiment