Russian Journal of Ecology

, Volume 49, Issue 2, pp 102–110 | Cite as

Genetic Differentiation of the Ural Endemic Gypsophila uralensis (Caryophyllaceae) in Relict Fragments of Its Range in Northwestern European Russia

  • L. V. Teteryuk
  • I. F. Chadin
  • D. M. Shadrin
  • Ya. I. Pylina
  • L. V. Puchnina


Molecular genetic methods (AFLP and ITS1–5.8S–ITS2 rDNA analysis) have been used to study the level and structure of genetic diversity in relict populations of the Ural endemic Gypsophila uralensis Less. in the northeast of European Russia. Intraspecific genetic differentiation is most clearly manifested between G. uralensis Less. subsp. pinegensis (Perf.) Kamelin locally endemic to the north of Europe (Arkhangelsk oblast, locus classicus) the population of G. uralensis Less. subsp. uralensis on limestone outcrops along the Shchugor River, the Subpolar Urals. The cluster of Timan populations (on limestone outcrops along the Svetlaya, Pizhma, and Myla rivers) is autonomous and genetically heterogeneous. Genetic distances between model G. uralensis s.l. populations are correlated with geographic distances. The size and abundance of relict populations show a descending gradient in the forest zone, and parameters of their genetic diversity [1] and unbiased expected heterozygosity have been found to decrease along this gradient.


AFLP ITS1-5,8S-ITS2 rDNA Gypsophila uralensis Less. Caryophyllaceae endemic glacial relict small populations limestone outcrops rare protected species northwestern European Russia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.Google Scholar
  2. 2.
    Walisch, T.J., Matthies, D., Hermant, S., et al., Genetic structure of Saxifraga rosacea subsp. sponhemica, a rare endemic rock plant of Central Europe, Plant Syst. Evol., 2015, vol. 301, pp. 251–263.CrossRefGoogle Scholar
  3. 3.
    Tang, M., Yu, F.-H., Jin, X.-B., et al., High genetic diversity in the naturally rare plant Taihangia rupestris Yuet Li (Rosaceae) dwelling only on cliff faces, Pol. J. Ecol., 2010, vol. 58, pp. 241–248.Google Scholar
  4. 4.
    Martinez-Nieto, M.I., Segarra-Moragues, J.G., Merlo, E., et al., Genetic diversity, genetic structure and phylogeography of the Iberian endemic Gypsophila struthium (Caryophyllaceae) as revealed by AFLP and plastid DNA sequences: Connecting habitat fragmentation and diversification, Bot. J. Linn. Soc., 2013, vol. 173, pp. 654–675.CrossRefGoogle Scholar
  5. 5.
    Cotrim, H.C., Chase, M.W., and Pais, M.S., Silene rothmaleri P. Silva (Caryophyllaceae), a rare, fragmented but genetically diverse species, Biodiv. Conserv., 2003, vol. 12, no. 6, pp. 1083–1098.CrossRefGoogle Scholar
  6. 6.
    Nakagawa, M., Genetic diversity of fragmented populations of Polygala reinii (Polygalaceae), a perennial herb endemic to Japan, J. Plant Res., 2004, vol. 117, pp. 355–361.CrossRefPubMedGoogle Scholar
  7. 7.
    Groom, M.J., Meffe, G.K., and Carroll, C.R., Principles of Conservation Biology, Sunderland, MA: Sinauer Inc., 2006.Google Scholar
  8. 8.
    Singliarova, B., Chrtek, Jr.J., and Mraz, P., Loss of genetic diversity in isolated populations of an alpine endemic Pilosella alpicola subsp. ullepitschii: Effect of long-term vicariance or long-distance dispersal?, Plant Syst. Evol., 2008, vol. 275, pp. 181–191.CrossRefGoogle Scholar
  9. 9.
    Lauterbach, D., Ristow, M., and Gemeinholzer, B., Population genetics and fitness in fragmented populations of the dioecious and endangered Silene otites (Caryophyllaceae), Plant Syst. Evol., 2012, vol. 298, pp. 155–164.CrossRefGoogle Scholar
  10. 10.
    Yudin, Yu.P., The relict flora of limestones in the northwest of the European Soviet Union, in Materialy po istorii flory i rastitel’nosti SSSR (Materials on the History of Flora and Vegetation of the Soviet Union), vol. 4, Moscow: Akad. Nauk SSSR, 1963, pp. 493–587.Google Scholar
  11. 11.
    Gorchakovsky, P.L., Endemic and relict elements in the flora of the Urals and their origin, in Materialy po istorii flory i rastitel’nosti SSSR (Materials on the History of Flora and Vegetation of the Soviet Union), vol. 4, Moscow: Akad. Nauk SSSR, 1963, pp. 285–375.Google Scholar
  12. 12.
    Krasnaya kniga Arkhangel’skoi oblasti (The Red Data Book of Arkhangelsk Oblast), Arkhangelsk, 2008.Google Scholar
  13. 13.
    Krasnaya Kniga Respubliki Komi (The Red Data Book of the Komi Republic), Syktyvkar: Komi Respublikanskaya Tipografiya, 2009.Google Scholar
  14. 14.
    Krasnaya kniga Sverdlovskoi oblasti: Zhivotnye, rasteniya, griby (The Red Data Book of Sverdlovsk Oblast: Animals, Plants, and Fungi), Yekaterinburg: Basko, 2008.Google Scholar
  15. 15.
    Andreicheva, L.N., Pleistotsen Evropeiskogo Severo-Vostoka (The Pleistocene of Northeastern Europe), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2002.Google Scholar
  16. 16.
    Perfil’ev, I.A., Gypsophila pinegensis Perf, sp. n., Bot. Zh., 1941, vol. 26, no. 1, pp. 28–33.Google Scholar
  17. 17.
    Krasnaya kniga Rossiiskoi Federatsii (rasteniya i griby) (The Red Data Book of the Russian Federation: Plants and Fungi), Moscow: KMK, 2008.Google Scholar
  18. 18.
    Ikonnikov, S.S. The genus Gypsophila L., in Flora Vostochnoi Evropy (The Flora of Eastern Europe), vol. 11, Moscow: KMK, 2004, pp. 257–264.Google Scholar
  19. 19.
    Yurtsev, B.A., The family Caryophyllaceae, in Arkticheskaya flora SSSR (Caryophyllaceae–Ranunculaceae) (The Arctic Flora of the Soviet Union: Caryophyllaceae–Ranunculaceae), vol. 6, Leningrad: Nauka, 1971, pp. 7–123.Google Scholar
  20. 20.
    Sievers, F., Wilm, A., Dineen, D., et al., Fast, scalable generation of high quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 2011, vol. 7, Article no.539.Google Scholar
  21. 21.
    Darriba, D., Taboada, G.L., Doallo, R., et al., jModelTest 2: More models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, no. 8, pp. 772–772.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Swofford, D.L., PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4, Sunderland, MA: Sinauer Assoc., 2003.Google Scholar
  23. 23.
    Vos, P., Hogers, R., Bleeker, M., et al., AFLP: A new technique for DNA fingerprinting, Nucleic Acid Res., 1995, vol. 23, pp. 4407–4414.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Excoffier, L., Laval, G., and Schneider, S., Arlequin (version 3.0): An integrated software package for population genetics data analysis, Evol. Bioinform. Online, 2004, vol. 1, pp. 47–50.Google Scholar
  25. 25.
    Peakall, R. and Smouse, P.E., GenAlex 6: Genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, no. 1, pp. 288–295.CrossRefGoogle Scholar
  26. 26.
    Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, pp. 283–292.CrossRefGoogle Scholar
  27. 27.
    R Development Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, 2008.Google Scholar
  28. 28.
    Ehrich, D., AFLPdat: A collection of R functions for convenient handling of AFLP data, Mol. Ecol. Notes, 2006, vol. 6, no. 3, pp. 603–604.CrossRefGoogle Scholar
  29. 29.
    Schönswetter, P. and Tribsch, A., Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae), Taxon, 2005, vol. 54, pp. 725–732.CrossRefGoogle Scholar
  30. 30.
    Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 1967, vol. 27, no. 2, pp. 209–220.PubMedGoogle Scholar
  32. 32.
    Jombart, T. and Ahmed, I., Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data, Bioinformatics, 2011, vol. 27, pp. 3070–3071.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jakobsson, M. and Rosenberg, N.A., CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure, Bioinformatics, 2007, vol. 23, no. 14, pp. 1801–1806.CrossRefPubMedGoogle Scholar
  34. 34.
    Pritchard, J.K., Wen, W., and Falush, D., Documentation for STRUCTURE Software: Version 2.3, 2010.Google Scholar
  35. 35.
    Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software structure: A simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611–2620.CrossRefPubMedGoogle Scholar
  36. 36.
    Earl, D.A. and von Holdt, B.M., STRUCTURE HARVESTER: A website and program for visualizing structure output and implementing the Evanno method, Conserv. Genet. Resources, 2012, vol. 4, no. 2, pp. 359–361.CrossRefGoogle Scholar
  37. 37.
    Kopelman, N.M., Mayzel, J., Jakobsson, M., et al., Clumpak: A program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resources, 2015, vol. 15, no. 5, pp. 1179–1191.CrossRefGoogle Scholar
  38. 38.
    Fior, S., Karis, P.O., Casazza, G., et al., Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matK and nuclear rDNA ITS sequences, Am. J. Bot., 2006, vol. 93, no. 3, pp. 399–411.CrossRefPubMedGoogle Scholar
  39. 39.
    Barkoudah, Y.I., A revision of Gypsophila, Bolanthus, Ankyropetalum, and Phryna1, Wentia, 1962, vol. 9, pp. 1–203.CrossRefGoogle Scholar
  40. 40.
    Casas, J.F., Gypsophila montserratii, nueva especie del Sur de España, Publ. Inst. Biol. Apl. Barcelona, 1972, vol. 52, pp. 121–123.Google Scholar
  41. 41.
    Jombart, T., Devillard, S., and Balloux, F., Discriminant analysis of principal components: A new method for the analysis of genetically structured populations, BMC Genet., 2010, vol. 11, no. 1, p.94.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tomilova, L.I., On the anthecology of high-mountain endemics of the Urals (Caryophyllaceae) in culture, in Ekologiya opyleniya rastenii: Mezhvuz. sb. nauch. tr. (The Ecology of Plant Pollination: Intercollegiate Scientific Papers), Perm: Perm. Gos. Univ., 1984, pp. 3–15.Google Scholar
  43. 43.
    Teteryuk, L.V., Gypsophila uralensis Less., family Caryophyllaceae, in Biologiya i ekologiya redkikh rastenii Respubliki Komi (The Biology and Ecology of Rare Plants of the Komi Republic), vol. 2, Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2009, pp. 9–39.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Teteryuk
    • 1
  • I. F. Chadin
    • 1
  • D. M. Shadrin
    • 1
  • Ya. I. Pylina
    • 1
  • L. V. Puchnina
    • 2
  1. 1.Institute of Biology, Komi Scientific Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia
  2. 2.Pinega State Nature ReservePinega, Arkhangelsk oblastRussia

Personalised recommendations