Russian Journal of Ecology

, Volume 49, Issue 2, pp 172–179 | Cite as

Factors Affecting Predator-Prey Distribution in a Protected Area, Tehran, Iran (a Case with Wolves and Wild Sheep)

  • S. Safavian
  • A. Alizadeh Shabani
  • J. Imani Harsini
  • M. Naderi
Article
  • 17 Downloads

Abstract

We tried to model habitat suitability of two prey and predator species including wild sheep (Ovis orientalis) and wolf (Canis lupus) in Varjin protected area located in northern east of Tehran using a presence only method, maximum entropy (MaxEnt). Totally 11 environmental variables were measured in the species presence points which can be classified in three groups including topographical, vegetation and distal variables. Resulted maps indicated that habitat variables such as slope (ranging from 35 to 40 percent) and elevation (lower than 1700 meters above sea level) are both institute those factors which mostly affect studied prey and predator habitat use. Our results regarding prey and predator geographical range of used habitat indicated that wolves cover most area than wild sheep which show more dispersed habitat resources for the prey species. ENMTools test revealed that wolf’s niche breadth is more than twice as much as wild sheep’s. Wild sheep in Varjin protected area has a relatively narrow geographical extent and shows a tendency to marginal habitats while wolves cover obviously more areas which denotes its high mobility and low dependency to specific habitats.

Keywords

Canis lupus Ovis orientalis MaxEnt ENMTools Varjin protected area Habitat suitability modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andren, H., Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review, Oikos, 1994, pp. 355–366.Google Scholar
  2. 2.
    Fahrig, L., Relative effects of habitat loss and fragmentation on population extinction, J. Wildl. Manag., 1997, pp. 603–610.Google Scholar
  3. 3.
    Svancara, L.K., Scott, M., Groves, C.R., Noss, R.F., and Pressey, R.L., Policy-driven versus evidence-based conservation: A review of political targets and biological needs, BioScience, 2005, vol. 55, pp. 989–995.CrossRefGoogle Scholar
  4. 4.
    Kearney, M. and Porter, W.P., Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard, Ecology, 2004, vol. 85, pp. 3119–3131.CrossRefGoogle Scholar
  5. 5.
    Price, T.D. and Kirkpatrick, M., Evolutionarily stable range limits set by interspecific competition, Proc. R. Soc. London, Ser. B, 2009, vol. 276 (1661), pp. 1429–1434. doi 10.1098/rspb.2008.1199CrossRefGoogle Scholar
  6. 6.
    Arsenault, R. and Owen-Smith, N., Facilitation versus competition in grazing herbivore assemblages, Oikos, 2002, vol. 97, pp. 313–318.CrossRefGoogle Scholar
  7. 7.
    Zollner, P.A. and Lima, S.L., Search strategies for landscape-level interpatch movements, Ecology, 1999, vol. 80, pp. 1019–1030.CrossRefGoogle Scholar
  8. 8.
    Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M., et al., Using species distribution models to predict new occurrences for rare plants, Divers. Distributions, 2009, vol. 15, pp. 565–576.CrossRefGoogle Scholar
  9. 9.
    Forrest, J.L., Wikramanayake, E., Shrestha, R., Areendran, G., Gyeltshen, K., Maheshwari, A., et al., Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya, Biol. Conserv., 2012, vol. 150, pp. 129–135.CrossRefGoogle Scholar
  10. 10.
    Aryal, A., Brunton, D., Ji, W., and Raubenheimer, D., Blue sheep in the Annapurna Conservation Area, Nepal: Habitat use, population biomass and their contribution to the carrying capacity of snow leopards, Integr. Zool., 2014, vol. 9, pp. 34–45.CrossRefPubMedGoogle Scholar
  11. 11.
    Peers, M.J., Wehtje, M., Thornton, D.H., and Murray, D.L., Prey switching as a means of enhancing persistence in predators at the trailing southern edge, Global Change Biol., 2014, vol. 20, pp. 1126–1135.CrossRefGoogle Scholar
  12. 12.
    Phillips, S.J., Dudík, M., Schapire, R.E., A maximum entropy approach to species distribution modeling, in ICML '04: Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta, Canada, July 4–8, 2004, New York: ACM, 2004, p.83.CrossRefGoogle Scholar
  13. 13.
    Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, pp. 231–259.CrossRefGoogle Scholar
  14. 14.
    Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., and Yates, C.J., A statistical explanation of MaxEnt for ecologists, Divers. Distributions, 2011, vol. 17, pp. 43–57.CrossRefGoogle Scholar
  15. 15.
    Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C., and Guisan, A., Effects of sample size on the performance of species distribution models, Divers. Distributions, 2008, vol. 14, pp. 763–773.CrossRefGoogle Scholar
  16. 16.
    Fielding, A.H., Bell, J.F., A review of methods for the assessment of prediction errors in conservation presence/ absence models, Environ. Conserv., 1997, vol. 24, pp. 38–49.CrossRefGoogle Scholar
  17. 17.
    Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I., et al., Predicting species distributions for conservation decisions, Ecol. Lett., 2013, vol. 16, pp. 1424–1435.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Manel, S., Williams, H.C., Ormerod, S.J., Evaluating presence–absence models in ecology: The need to account for prevalence, J. Appl. Ecol., 2001, vol. 38, pp. 921–931.CrossRefGoogle Scholar
  19. 19.
    Franklin, J., Wejnert, K.E., Hathaway, S.A., Rochester, C.J., and Fisher, R.N., Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California, Divers. Distributions, 2009, vol. 15, pp. 167–177.CrossRefGoogle Scholar
  20. 20.
    Phillips, S.J. and Dudík, M., Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, pp. 161–175.CrossRefGoogle Scholar
  21. 21.
    Warren, D.L., Glor, R.E., Turelli, M., Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution, Evolution, 2008, vol. 62, pp. 2868–2883.CrossRefPubMedGoogle Scholar
  22. 22.
    Legault, A., Theuerkauf, J., Chartendrault, V., Rouys, S., Saoumoé, M., Verfaille, L., et al., Using ecological niche models to infer the distribution and population size of parakeets in New Caledonia, Biol. Conserv., 2013, vol. 167, pp. 149–160.CrossRefGoogle Scholar
  23. 23.
    Vanderwal, J., Shoo, L.P., Graham, C., and Williams, S.E., Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?, Ecol. Model., 2009, vol. 220, pp. 589–594.CrossRefGoogle Scholar
  24. 24.
    Warren, D.L. and Seifert, S.N., Ecological niche modeling in MaxEnt: The importance of model complexity and the performance of model selection criteria, Ecol. Appl., 2011, vol. 21, pp. 335–342.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakazato, T., Warren, D.L., Moyle, L.C., Ecological and geographic modes of species divergence in wild tomatoes, Am. J. Bot., 2010, vol. 97, pp. 680–693.CrossRefPubMedGoogle Scholar
  26. 26.
    Naderi, M., Kaboli, M., Ahmadi, M., and Kryštufek, B., Fat dormouse (Glis glis L.) distribution modeling in the Hyrcanian relict forests of Northern Iran, Pol. J. Ecol., 2016, vol. 64, pp.136–142.CrossRefGoogle Scholar
  27. 27.
    Mech, L.D. and Boitani, L., Wolf social ecology, in Wolves: Behavior, Ecology and Conservation, Chicago, IL: Univ. of Chicago Press, 2003, pp. 1–34.CrossRefGoogle Scholar
  28. 28.
    Treves, A., Martin, K.A., Wydeven, A.P., and Wiedenhoeft, J.E., Forecasting environmental hazards and the application of risk maps to predator attacks on livestock, BioScience, 2011, vol. 61, pp. 451–458.CrossRefGoogle Scholar
  29. 29.
    Rich, L.N., Mitchell, M.S., Gude, J.A., and Sime, C.A., Anthropogenic mortality, intraspecific competition, and prey availability influence territory sizes of wolves in Montana, J. Mammal., 2012, vol. 93, pp. 722–731.CrossRefGoogle Scholar
  30. 30.
    Ziaie, H., A Field Guide to the Mammals of Iran, Tehran, Iran: Iranian Wildlife Center, 2008 (in Persian).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Safavian
    • 1
  • A. Alizadeh Shabani
    • 2
  • J. Imani Harsini
    • 3
  • M. Naderi
    • 4
  1. 1.Department of Environment and Energy, Science and Research branchIslamic Azad UniversityTehranIran
  2. 2.Department of Environment, Faculty of Natural ResourcesUniversity of TehranKarajIran
  3. 3.Department of Environment and Energy, Science and Research branchIslamic Azad UniversityTehranIran
  4. 4.Department of Environmental Sciences, Faculty of Agriculture and Natural SciencesArak UniversityArakIran

Personalised recommendations