Russian Journal of Ecology

, Volume 49, Issue 2, pp 119–127 | Cite as

Analysis of Successional Dynamics of a Sown Meadow using Ramenskii–Grime’s System of Ecological Strategies

Article
  • 9 Downloads

Abstract

Long-term dynamics (1960–2015) of the species composition of an agrocenosis (sown meadow) in the Far North (Vorkuta district, Komi Republic) have been analyzed from the standpoint of its position in Ramenskii–Grime’s CSR system of ecological strategies. This position has been determined as the weighted average of the coordinates of individual species recorded in each year of the observation period. It has been found that the interruption of regular fertilizer application and hay harvesting leads to a decrease in ruderality score (from 0.46 to 0.29) and an increase in competitiveness score (from 0.31 to 0.46), with the most significant changes taking place after termination of the agricultural regime (complete cessation of fertilizer application and hay harvesting). As shown by analyzing the trajectory of the meadow in the CSR space, termination of economic activities in the tundra agrocenosis does not provide for an obvious recovery of the vegetation characteristic of natural tundra communities.

Keywords

long-lived agrocenosis tundra zone Ramenskii–Grime’s ecological strategies CSR system succession vegetation dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Romanovskii, Yu.E., Current state of the concept of life cycle strategy, Biol. Nauki, 1989, no. 11, pp. 18–31.Google Scholar
  2. 2.
    Smirnova, O.V., Struktura travyanogo pokrova shirokolistvennykh lesov (The Structure of Herbaceous Layer in Broadleaf Forests), Moscow: Nauka, 1987.Google Scholar
  3. 3.
    Mayorova, O.Y., Hrytsak, L.R., and Drobyk, N.M., The strategy of Gentiana lutea L. populations in the Ukrainian Carpathians, Russ. J. Ecol., 2015, vol. 46, no. 1, pp. 43–50.CrossRefGoogle Scholar
  4. 4.
    Grime, J.P., Hodgson, J.G., and Hunt, R., Comparative Plant Ecology: A Functional Approach to Common British Species, London: Springer, 1988.CrossRefGoogle Scholar
  5. 5.
    Hills, J.M., Murphy, K.J., Pulford, I.D., et al., A method for classifying European riverine wetland ecosystems using functional vegetation groups, Funct. Ecol., 1994, vol. 8, no. 2, pp. 242–252.CrossRefGoogle Scholar
  6. 6.
    Wilson, P.J., Thompson, K., and Hodgson, J.G., Specific leaf area and leaf dry matter content as alternative predictors of plant strategies, New Phytol., 1999, vol. 143, no. 1, pp. 155–162.CrossRefGoogle Scholar
  7. 7.
    Vendramini, F., Díaz, S., Gurvich, D.E., et al., Leaf traits as indicators of resource-use strategy in floras with succulent species, New Phytol., 2002, vol. 154, no. 1, pp. 147–157.CrossRefGoogle Scholar
  8. 8.
    P'yankov, V.I. and Ivanov, L.A., Biomass allocation in boreal plants with different ecological strategies, Russ. J. Ecol., 2000, vol. 31, no. 1, pp. 1–7.CrossRefGoogle Scholar
  9. 9.
    Maslova, S.P., Tabalenkova, G.N., and Golovko, T.K., Respiration and nitrogen and carbohydrate contents in perennial rhizome-forming plants as related to realization of different adaptive strategies, Russ. J. Plant Physiol., 2010, vol. 57, no. 5, pp. 631–640.CrossRefGoogle Scholar
  10. 10.
    Rabotnov, T.A., Studies on cenotic populations aimed to elucidate life strategies of plant species, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1975, vol. 80, no. 2, pp. 5–17.Google Scholar
  11. 11.
    Rabotnov, T.A., On the types of plant strategies, Ekologiya, 1985, no. 3, pp. 3–12.Google Scholar
  12. 12.
    Degteva, S.V. and Novakovskii, A.B., Ekologo-tsenoticheskie gruppy sosudistykh rastenii v fitotsenozakh landshaftov basseina verkhnei i srednei Pechory (Ecocenotic Groups of Vascular Plants in Phytocenoses of Landscapes of the Upper and Middle Pechora Basin), Yekaterinburg: Ural Otd. Ross. Akad. Nauk, 2012.Google Scholar
  13. 13.
    Ramenskii, L.G., On principal rules, basic concepts, and terms of land typology, geobotany, and ecology, Sov. Bot., 1935, no. 4, pp. 25–42.Google Scholar
  14. 14.
    Grime, J.P., Plant Strategies and Vegetation Processes, New York: Wiley, 1979.Google Scholar
  15. 15.
    Thompson, K., Predicting the fate of temperate species in response to human disturbance and global change, in Biodiversity, Temperate Ecosystems, and Global Change, Boyle, T.J.B. and Boyle, C.E.B., Eds., Berlin: Springer, 1994, pp. 61–76.CrossRefGoogle Scholar
  16. 16.
    Massant, W., Godefroid, S., and Koedam, N., Clustering of plant life strategies on meso-scale, Plant Ecol., 2009, vol. 205, no. 1, pp. 47–56.CrossRefGoogle Scholar
  17. 17.
    Grime, J.P., Thompson, K., Hunt, R., et al., Integrated screening validates primary axes of specialization in plants, Oikos, 1997, vol. 79, no. 2, pp. 259–281.CrossRefGoogle Scholar
  18. 18.
    Lytkina, L.P. and Mironova, S.I., Postfire succession in a forest of the cryolithozone: The example of central Yakutia, Russ. J. Ecol., 2009, vol. 40, no. 3, pp. 154–159.CrossRefGoogle Scholar
  19. 19.
    Mayer, R., Kaufmann, R., Vorhauser, K., et al., Effects of grazing exclusion on species composition in highaltitude grasslands of the central Alps, Basic Appl. Ecol., 2009, vol. 10, no. 5, pp. 447–455.CrossRefGoogle Scholar
  20. 20.
    Grime, J.P. and Pierce, S., The Evolutionary Strategies That Shape Ecosystems, Chichester: Wiley–Blackwell, 2012.CrossRefGoogle Scholar
  21. 21.
    Khantimer, I.S., Sel’skokhozyaistvennoe osvoenie tundry (Agricultural Development of the Tundra), Leningrad: Nauka, 1974.Google Scholar
  22. 22.
    Rodin, L.E., Remezov, N.P., and Bazilevich, N.I., Metodicheskie ukazaniya k izucheniyu dinamiki i biologicheskogo krugovorota v fitotsenozakh (Methodological Guidelines for the Study of Dynamics and Biological Turnover in Phytocenoses), Leningrad: Nauka, 1968.Google Scholar
  23. 23.
    Cherepanov, S.K., Sosudistye rasteniya Rossii i sopredel’nykh gosudarstv (v predelakh byvshego SSSR) (Vascular Plants of Russia and Neighboring States of the Former Soviet Union), St. Petersburg: Mir i Sem’ya, 1995.Google Scholar
  24. 24.
    Hodgson, J.G., Wilson, P.J., Hunt, R., et al., Allocating C-S-R plant functional types: A soft approach to a hard problem, Oikos, 1999, vol. 85, no. 2, pp. 282–294.CrossRefGoogle Scholar
  25. 25.
    Hunt, R., Hodgson, J.G., Thompson, K., et al., A new practical tool for deriving a functional signature for herbaceous vegetation, Appl. Veg. Sci., 2004, vol. 7, no. 2, pp. 163–170.CrossRefGoogle Scholar
  26. 26.
    Panyukov, A.N., Kotelina, N.S., Archegova, I.B., et al., Biologicheskoe raznoobrazie i produktivnost’ antropogennykh ekosistem Krainego Severa (Biological Diversity and Productivity of Anthropogenic Ecosystems in the Far North), Yekaterinburg: Ural Otd. Ross. Akad. Nauk, 2005.Google Scholar
  27. 27.
    Rabotnov, T.A., Fitotsenologiya (Phytocenology), Moscow: Mosk. Gos. Univ., 1983.Google Scholar
  28. 28.
    Biogeotsenologicheskie issledovaniya na seyanykh lugakh v vostochno-evropeiskoi tundre (Biological Studies on Sown Meadows in the Eastern European Tundra), Archegova, I.B. and Kotelina, N.S., Eds., Leningrad: Nauka, 1979.Google Scholar
  29. 29.
    Marini, L., Fontana, P., Scotton, M., et al., Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps, J. Appl. Ecol., 2008, vol. 45, no. 1, pp. 361–370.CrossRefGoogle Scholar
  30. 30.
    Stancic, Z., Škvorc, Ž., Franjic, J., et al., Vegetation of trampled habitats in the Plitvice Lakes National Park in Croatia, Plant Biosyst., 2008, vol. 142, no. 2, pp. 264–274.CrossRefGoogle Scholar
  31. 31.
    McGovern, S., Evans, C.D., Dennis, P., et al., Identifying drivers of species compositional change in a seminatural upland grassland over a 40-year period, J. Veg. Sci., 2011, vol. 22, no. 2, pp. 346–356.CrossRefGoogle Scholar
  32. 32.
    Verstraeten, G., Baeten, L., Van den Broeck, T., et al., Temporal changes in forest plant communities at different site types, Appl. Veg. Sci., 2013, vol. 16, no. 2, pp. 237–247.CrossRefGoogle Scholar
  33. 33.
    Lewis, R.J., Pakeman, R.J., Angus, S., et al., Using compositional and functional indicators for biodiversity conservation monitoring of semi-natural grasslands in Scotland, Biol. Conserv., 2014, vol. 175, pp. 82–93.CrossRefGoogle Scholar
  34. 34.
    Otsus, M., Kukk, D., Kattai, K., et al., Clonal ability, height and growth form explain species’ response to habitat deterioration in Fennoscandian wooded meadows, Plant Ecol., 2014, vol. 215, no. 9, pp. 953–962.CrossRefGoogle Scholar
  35. 35.
    Martín-García, J., Jactel, H., Oria-de-Rueda, J.A., et al., The effects of poplar plantations on vascular plant diversity in riparian landscapes, Forests, 2016, vol. 7, no. 3, pp. 1–14.CrossRefGoogle Scholar
  36. 36.
    Rabotnov, T.A., Lugovedenie (Meadow Science), Moscow: Mosk. Gos. Univ., 1974.Google Scholar
  37. 37.
    Dahlström, A., Cousins, S.A.O., and Eriksson, O., The history (1620–2003) of land use, people and livestock, and the relationship to present plant species diversity in a rural landscape in Sweden, Environ. History, 2006, vol. 12, no. 2, pp. 191–212.CrossRefGoogle Scholar
  38. 38.
    Evstigneev, O.I. and Voevodin, P.V., Forest vegetation formation in meadows (the example of Nerussa–Desna polesye), Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2013, vol. 118, no. 4, pp. 64–70.Google Scholar
  39. 39.
    Kovaleva, V.A., Khabibullina, F.M., Archegova, I.B., et al., Characteristics of the biota of a postagrogenic ecosystem in the tundra zone, Izv. Komi Nauch. Tsentra Ural Otd. Ross. Akad. Nauk, 2014, no. 3, pp. 70–74.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Biology, Komi Scientific Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations