Russian Journal of Ecology

, Volume 49, Issue 2, pp 128–134 | Cite as

Concentration of Heavy Metals in Dominant Moss Species as an Indicator of Aerial Technogenic Load

Article
  • 9 Downloads

Abstract

The concentrations of nickel and copper were determined in mosses Hylocomium splendens and Pleurozium schreberi sampled in 1991 and 2011 at the same sites in the Lapland State Biosphere Reserve located in the impact area of atmospheric emissions from the Severonickel Smelter Combine (Monchegorsk, Murmansk Region, Russia). Both moss species have been confirmed to adequately reflect the levels of aerial technogenic load and can be used equally to monitor environmental pollution from heavy metals. It has been statistically proven that not only the volume of atmospheric emissions of polymetallic dust and the distance to the pollution source affect the concentrations of heavy metals in the studied moss species, but the wind rose and relief are also of importance.

Keywords

heavy metals Kola Peninsula aerial technogenic pollution bryoindication of pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salemaa, M., Derome, J., Helmisaari, H.-S., et al., Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulphur deposition in Finland, Sci. Tot. Environ., 2004, vol. 324, pp. 141–160.CrossRefGoogle Scholar
  2. 2.
    Lyanguzova, I.V., Tolerance for industrial air pollution in the components of forest ecosystems of northern Russia, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg, 2010.Google Scholar
  3. 3.
    Taylor, F.G. and Witherspoon, J.P., Retention of simulated fallout particles by lichens and mosses, Health Phys., 1972, vol. 23, pp. 867–869.PubMedGoogle Scholar
  4. 4.
    Rühling, A. and Tyler, G., Regional difference in the deposition of heavy metals over Scandinavia, J. Appl. Ecol., 1971, vol. 8, pp. 497–507.CrossRefGoogle Scholar
  5. 5.
    Ruhling, A. and Tyler, G., Heavy metal deposition in Scandinavia, Water Air Soil Pollut., 1973, vol. 2, pp. 445–455.CrossRefGoogle Scholar
  6. 6.
    Steinnes, E., Atmospheric Deposition of Trace Elements in Norway Studied by Means of Moss Analysis, Kjeller Report, KR 154, Kjeller, Norway: Institutt for Atomenergi, 1977.Google Scholar
  7. 7.
    Steinnes, E., Use of mosses in heavy metal deposition studies, in EMEP/CCC-Report 3/1985, pp. 161–170.Google Scholar
  8. 8.
    Pakarinen, P. and Tolonen, K., Regional survey of heavy metals in peat mosses (Sphagnum), Ambio, 1976, vol. 5, pp. 38–40.Google Scholar
  9. 9.
    Makinen, A., Heavy metals and arsenic concentrations of a woodland moss Hylocomium splendens (Hedw.) Br. et Sch. growing around a coal-fired power plant in coastal southern Finland, Projekt Kol-hälsa-miljö. Teknisk Rapport 85, 1983.Google Scholar
  10. 10.
    Grodzinska, K., Mosses as bioindicators of heavy metal pollution in Polish national parks, Water Air Soil Pollut., 1978, vol. 9, pp. 83–97.CrossRefGoogle Scholar
  11. 11.
    Onianwa, P.C., Monitoring atmospheric metal pollution: A review of the use of mosses as indicators, Environ. Monit. Assess., 2001, vol. 71, pp. 13–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Nikodemus, O., Brumelis, G., Tabors, G., et al., Monitoring of air pollution in Latvia between 1990 and 2000 using moss, J. Atmos. Chem., 2004, vol. 49, nos. 1–3, pp. 521–531.CrossRefGoogle Scholar
  13. 13.
    Ermakova, E.V., Frontasyeva, M.V., and Steinnes, E., Air pollution studies in Central Russia (Tula region) using the moss biomonitoring technique, NAA and AAS, J. Radioanal. Nucl. Chem., 2004, vol. 259, pp. 51–58.CrossRefGoogle Scholar
  14. 14.
    Koroleva, Yu.V., Bioindication of heavy metal fallout by mosses in Kaliningrad oblast, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Kaliningrad, 2004.Google Scholar
  15. 15.
    Zhang, Y.X., Cao, T., Atsuo, I., et al., Study of moss as air pollution monitor by SRXRF technique, Chinese Sci. Bull., 2009, vol. 54, no. 1, pp. 1–4.CrossRefGoogle Scholar
  16. 16.
    Blagnyte, R. and Paliulis, D., Research into heavy metals pollution of atmosphere applying moss as bioindicator: A literature review, Environ. Res. Eng. Manag., 2010, vol. 66, pp. 26–33.Google Scholar
  17. 17.
    Koroleva, Yu.V. and Pukhlova, I.A., New data on bioconcentration of heavy metals on the territory of the Baltic region, Vestn. Baltiisk. Federal. Univ., 2012, pp. 99–106.Google Scholar
  18. 18.
    Rukovodstvo po provedeniyu kompleksnogo monitoringa vliyaniya zagryazneniya vozdukha na ekosistemy. 7.4. Dopolnitel’naya podprogramma MC: Tyazhelye metally vo mkhakh (Guidelines for Integrated Monitoring of Air Pollution Effects on Ecosystems: 7.4. Additional Subprogram MS: Heavy Metals in Mosses), 2013.Google Scholar
  19. 19.
    Ryzhakova, N.K., Merkulov, V.G., Borisenko, A.L., et al., Bioindication of atmospheric air pollution by chemical industries, Izv. Vyssh. Uchebn. Zaved., Fiz., 2013, vol. 56, no. 11–3, pp. 254–258.Google Scholar
  20. 20.
    Dinamika lesnykh soobshchestv Severo-Zapada Rossii (Dynamics of Forest Communities in Northwestern Russia), St. Petersburg: OOO VVM, 2009.Google Scholar
  21. 21.
    Zverev, V.E., Mortality and recruitment of mountain birch (Betula pubescens ssp. czerepanovii) in the impact zone of a copper–nickel smelter in the period of significant reduction of emissions: The results of 15-year monitoring, Russ. J. Ecol., 2009, vol. 40, no. 4, pp. 254–260.CrossRefGoogle Scholar
  22. 22.
    Lyanguzova, I.V., Dynamics of nickel and copper contents in plants growing in pine forests of the Kola Peninsula under conditions of industrial air pollution, Rastit. Resursy, 2008, vol. 44, no. 4, pp. 91–98.Google Scholar
  23. 23.
    Lyanguzova, I.V., Dynamic trends of heavy metal contents in plants and soil under different industrial air pol lution regimes, Russ. J. Ecol., 2017, vol. 48, no. 4, pp. 311–320.CrossRefGoogle Scholar
  24. 24.
    Lyanguzova, I.V., Goldvirt, D.K., and Fadeeva, I.K., Spatiotemporal dynamics of the pollution of Al-Fehumus podzols in the impact zone of a nonferrous metallurgical plant, Euras. Soil Sci., 2016, vol. 49, no. 10, pp. 1189–1203.CrossRefGoogle Scholar
  25. 25.
    Sukhareva, T.A., Spatiotemporal dynamics of trace element composition of coniferous trees and soils under conditions of industrial pollution, Izv. Vyssh. Uchebn. Zaved., Lesnoi Zh., 2013, no. 6, pp. 19–28.Google Scholar
  26. 26.
    Sukhareva, T.A. and Lukina, N.V., Mineral composition of assimilative organs of conifers after reduction of atmospheric pollution in the Kola Peninsula, Russ. J. Ecol., 2014, vol. 45, no. 2, pp. 95–102.CrossRefGoogle Scholar
  27. 27.
    Barcan, V. and Kovnatsky, E., Soil surface geochemical anomaly around the copper–nickel metallurgical smelter, Water Air Soil Pollut., 1998, vol. 103, pp. 197–218.CrossRefGoogle Scholar
  28. 28.
    Kozlov, M. and Barcan, V., Environmental contamination in the central part of the Kola Peninsula: History, documents and perception, Ambio, 2000, vol. 29, no. 8, pp. 512–517.CrossRefGoogle Scholar
  29. 29.
    Kozlov, M.V., Zvereva, E.V., and Zverev, V.E., Impact of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Contaminated Areas, Dordrecht: Springer, 2009.CrossRefGoogle Scholar
  30. 30.
    Ramenskaya, M.L., Mikroelementy v rasteniyakh Krainego Severa (Trace Elements in Plants of the Far North), Leningrad: Nauka, 1974.Google Scholar
  31. 31.
    Pilegaard, K., Rasmussen, L., and Gydesen, H., Atmospheric background deposition of heavy metals in Denmark monitored by epiphytic cryptogams, J. Appl. Ecol., 1983, vol. 16, pp. 843–853.CrossRefGoogle Scholar
  32. 32.
    Barkan, V.Sh., Soil pollution with nickel and copper from an industrial source of metallurgical dust, in Ekologicheskie problemy Severnykh regionov i puti ikh resheniya: Mat-ly Vseross. nauch. konf. s mezhdun. uchastiem (Ecological Problems in Northern Regions and Ways to Solve Them: Proc. All-Russia Sci. Conf. with International Participation), Apatity: Kol’sk. Nauch. Tsentr Ross. Akad. Nauk, 2008, part 1, pp. 46–51.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Lapland State Biosphere Nature ReserveMonchegorskRussia
  2. 2.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations