Skip to main content
Log in

Total soil available nitrogen under perennial grasses after burning and defoliation

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Total soil available nitrogen concentrations (NO–3 + NH +4 ) were determined underneath plants of the more-competitive Poa ligularis, mid-competitive Nassella tenuis and the less-competitive Amelichloa ambigua exposed to various combinations of controlled burning and defoliation treatments. Defoliations were at the vegetative (V), internode elongation (E) or both developmental morphology stages (V + E) during two years after burning in northeastern Patagonia, Argentina. Hypotheses were that (1) concentrations of total soil available nitrogen after burning are greater underneath burned than unburned plants. With time, these differences, however, will gradually disappear; (2) greater total soil available nitrogen concentrations are underneath plants of the more- than less-competitive perennial grasses; and (3) total soil available nitrogen is similar or lower underneath plants defoliated at the various developmental morphology stages in all three study species than on untreated controls at the end of the study. Concentration of total soil available nitrogen increased 35% (p < 0.05) on average after the first six months from burning in comparison to control plants. However, these differences disappeared (p > 0.05) towards the end of the first study year. Total soil available nitrogen concentrations were at least 10% lower underneath the less competitive N. tenuis and A. ambigua than the more competitive P. ligularis on average for all treatments, although differences were not significant (p > 0.05) most of the times. Defoliation had practically no effect on the concentration of total soil available nitrogen. Rather than any treatment effect, total soil nitrogen concentrations were determined by their temporal dynamics in the control and after the experimental fire treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerts, R. and De Caluwe, H, Nutritional and plant mediated controls on leaf litter decomposition of Carex species, Ecology, 1997, vol. 78, pp. 244–260.

    Article  Google Scholar 

  2. Ahlgren, I.F. and Ahlgren, C.E, Effects of prescribed burning on soil microorganisms in a Minnesota Jack Pine Forest, Ecology, 1965, vol. 46, pp. 304–310.

    Article  Google Scholar 

  3. Albanesi, A. and Anriquez, A., El fuego y el suelo, Kunst, C., Bravo, S., and Panigatti, J.L., Eds., Fuego en los ecosistemas argentinos, Santiago del Estero (Argentina): Editorial INTA, 2003, pp. 47–59.

    Google Scholar 

  4. Ambrosino, M., Busso, C., Minoldo, G., Martinez, J., Cardillo, D., Torres, Y., Ithurrart, L., Montenegro, O., Munch, M., Ponce, D., Giorgetti, H., and Rodríguez, G., Descomposición de broza de gramíneas perennes en los pastizales naturales, XIV Congreso Argentino de la Ciencia del Suelo y IIReunión Nacional “Materia Orgánica y Sustancias Húmicas”, Buenos Aires, Bahía Blanca, 5 al 9 de mayo de 2014, 2014a.

    Google Scholar 

  5. Ambrosino, M., Busso, C., Minoldo, G., Martinez, J., Torres, Y., Montenegro, O., Ithurrart, L., Cardillo, D., Montani, T., Ponce, D., Giorgetti, H., and Rodríguez, G., Producción de broza foliar de Poa ligularis, Nassella tenuis y Amelichloa ambigua, XIV Congreso Argentino de la Ciencia del Suelo y II Reunión Nacional “Materia Orgánica y Sustancias Húmicas”, Buenos Aires, Bahía Blanca, 5 al 9 de mayo de 2014, 2014b.

    Google Scholar 

  6. Anderson, D.L, Compatibilidad entre pastoreo y mejoramiento de los pastizales naturales, Producción Animal 10, 1983, pp. 3–22. www.produccionanimal.com.ar.

    Google Scholar 

  7. Anderson, D.L, El fuego como elemento de manejo del pastizal natural, EEA INTA San Luis, V. Mercedes, Informativo Rural, 1984, vol. 20, pp. 3–4. www.produccionanimal. com.ar.

    Google Scholar 

  8. Anderson, T.M., Starmer, W.T., and Thorne, M, Bimodal root diameter distributions in Serengeti grasses exhibit plasticity in response to defoliation and soil texture: Implications for nitrogen uptake, Functional Ecol., 2007, vol. 21, pp. 50–60.

    CAS  Google Scholar 

  9. Arocena, J.M. and Opio, C, Prescribed fire-induced changes in properties of sub-boreal forest soils, Geoderma, 2003, vol. 113, pp. 1–16.

    Article  CAS  Google Scholar 

  10. Blair, J.M, Fire, Navailability, and plant response in grasslands: A test of the transient maxima hypothesis, Ecology, 1997, vol. 78, pp. 2359–2368.

    Google Scholar 

  11. Bogen, A.D., Bork, E.W., and Willms, W.D, Defoliation impacts on Festuca campestris (Rydb.) plants exposed to wildfire, J. Range Manag., 2003, vol. 56, pp. 375–381.

    Article  Google Scholar 

  12. Bóo, R.M. and Peláez, D.V, Ordenamiento y clasificación de la vegetación en un área del Sur Del Distrito del Caldén, Boletín de la Sociedad Argentina de Botánica, 1991, vol. 27, pp. 135–141.

    Google Scholar 

  13. Bóo, R.M., Peláez, D.V., Bunting, S.C., Elia, O.R., and Mayor, M.D, Effect of fire on grasses in central semi-arid Argentina, J. Arid Environ., 1996, vol. 32, pp. 259–269.

    Article  Google Scholar 

  14. Brown, R.W., The water relations of range plants: adaptations to water deficits, Bedunah, D.J. and Sosebee, R.E., Eds., Wildland Plants: Physiological Ecology and Developmental Morphology, Denver (USA): Society for Range Management, 1995, pp. 635–710.

  15. Busso, C.A., Brevedan, R.E., Flemmer, A.C., and Bolletta, A.I., Morphophysiological and demographic responses of perennial grasses to defoliation under water stress, Hemantaranjan, A., Ed., Plant Physiology and Plant Molecular Biology in the New Millennium. Advances in Plant Physiology, Vol. V, Jodhpur: Scientific Publishers, 2003, pp. 341–395 (India). http://www.angelfire.com/ak5/adv_pp/index.htm.

    Google Scholar 

  16. Cabrera, A.L., Regiones fitogeográficas Argentinas, Ferreira Sobral, E.F., Ed., Enciclopedia Argentina de Agricultura y Jardinería, Buenos Aires: ACME, 1976, pp. 1–85.

    Google Scholar 

  17. Cano, E., Pastizales naturales de La Pampa, Descripción de las especies más importantes, Buenos Aires: Convenio AACREA–Provincia de La Pampa,1988, p. 438.

    Google Scholar 

  18. Celaya Michel, H. and Castellanos Villegas, A.E., Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas, Terra Latinoamericana, 2011, vol. 29, pp. 343–356.

    Google Scholar 

  19. Coleman, D.C., Reid, C.P.P., and Cole, C.V, Biological strategies of nutrient cycling in soil systems, Adv. Ecol. Res., 1983, vol. 13, pp. 1–55.

    Article  Google Scholar 

  20. Soil factors affecting nutrient bioavailability, Bassiri-Rad, H, Ed., Ecological Studies, 2005, vol. 181, pp. 1–5

    Article  Google Scholar 

  21. Comerford, N.B., Nutrient Acquisition by Plants, An Ecological Perspective, Berlin (Germany): Springer-Verlag,2005, p. 348.

    Google Scholar 

  22. Daubenmire, R., Ecology of fire in grasslands, Craig, J.B., Ed., Advances in Ecological Research, New York (USA): Academic Press, 1968, pp. 209–266.

    Google Scholar 

  23. DeBano, L.F., Neary, D., and Folliott, P.F., Fire’s Effects on Ecosystems, New York (USA): John Wiley and Sons, 1998.

    Google Scholar 

  24. Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., and Robledo, C.W., Argentina: INFOSTAT Grupo INFOSTAT, FCA, Universidad Nacional de Córdoba, 2013.

    Google Scholar 

  25. Distel, R.A. and Bóo, R.M., Vegetation states and transitions in temperate semiarid rangelands of Argentina, West, E.N., Ed., Proceedings of the Vth International Rangeland Congress, Rangelands in a Sustainable Biosphere, Salt Lake City (USA): Society for Range Management, 1996, pp. 117–118.

    Google Scholar 

  26. Fenn, M.E., Poth, M.A., Aber, J.D., Baron, J.S., Bormann, B.T., Johnson, D.W., Lemly, A.D., McNulty, S.G., Ryan, D.F., and Stottlemyer, R, Nexcess in North American ecosystem: Predisposing factors, ecosystem responses, and management strategies, Ecol. Appl., 1998, vol. 8, pp. 706–733.

    Google Scholar 

  27. Fernández, O.A. and Busso, C.A., Arid and semi-arid rangelands: Two thirds of Argentina, Arnalds, O. and Archer, S., Eds., Case Studies of Rangeland Desertification, Reykjavik (Iceland): Agricultural Research Institute Report,1999, no. 200, pp. 41–60.

    Google Scholar 

  28. Giardina, C.P., Sanford, J, and Dockersmith, I.C, Changes in soil phosphorus and nitrogen during slash and burn clearing of a dry tropical forest, Soil Sci. Soc. Am. J., 2000, vol. 64, pp. 399–405.

    Article  CAS  Google Scholar 

  29. Giorgetti, H., Montenegro, O.A, Rodríguez, G.D., Busso, C.A., Montani, T., Burgos, M.A., Flemmer, A.C., Toribio, M.B., and Horvitz, S.S., The comparative influence of past management and rainfall on range herbaceous standing crop in east-central Argentina: 14 years of observations, J. Arid Environ., 1997, vol. 36, pp. 623–637.

    Article  Google Scholar 

  30. Harris, W.N., Moretto, A.S., Distel, R.A., Boutton, T.W., and Bóo, R.M, Fire and grazing in grasslands of the Argentine Caldenal: Effects on plant and soil carbon and nitrogen, Acta Oecologica, 2007, vol. 32, pp. 207–214.

    Article  Google Scholar 

  31. Hepper, E., Urioste, A., Belmonte, V., and Buschiazzo, D, Temperaturas de quema y propiedades físicas y químicas de suelos de la región semiárida pampeana central, Ciencia del Suelo, 2008, vol. 26, pp. 29–34.

    Google Scholar 

  32. Hoglund, J.H, Grazing intensity and soil nitrogen accumulation, Proceedings of the New Zealand Grassland Association, 1985, vol. 46, pp. 65–69. https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/dowload?cid=stelprdb124337&ext=pdf. Soil quality indicators. USDA Natural Resources Conservation Service. Accesses January 24, 2016.

    Google Scholar 

  33. Hubbert, K.R., Preisler, H.K., Wohlgemuth, P.M., Graham, R.C., and Narog, M.G, Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA, Geoderma, 2006, vol. 130, pp. 284–298.

    Google Scholar 

  34. INTA-CIRN, Mapa de suelos de la provincia de Buenos Aires, Buenos Aires: Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Recursos Naturales, Instituto de Evaluación de Tierras, 1989, p. 525.

  35. Ithurrart, L.A, Efectos de la defoliación luego de la quema de gramíneas perennes nativas palatables y no palatables en el Sudoeste Bonaerense, Doctoral Thesis, Bahía Blanca (Argentina): Departamento de Agronomía, Universidad Nacional del Sur, 2015, p. 204.

    Google Scholar 

  36. Knops, J.M.H., Bradley, K.L., and Wedin, D.A, Mechanisms of plant species impacts on ecosystem nitrogen cycling, Ecol. Lett., 2002, vol. 5, pp. 454–466.

    Article  Google Scholar 

  37. Kovacic, D.A., Swift, D.M., Ellis, J.E., and Hankonson, T.E, Immediate effects of prescribed burning on mineral soil N in ponderosa pine of New Mexico, Soil Sci., 1986, vol. 141, pp. 71–76.

    Article  Google Scholar 

  38. Li, W., Huan, H.Z., Shang, Z.N., and Wu, G.L, Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow, J. Soil Sci. Plant Nutrition, 2011, vol. 11, pp. 27–39.

    Article  CAS  Google Scholar 

  39. Moretto, A. and Distel, R, Soil nitrogen availability under grasses of different palatability in a temperate semiarid rangeland of central Argentina, Austral Ecol., 2002, vol. 27, pp. 509–514.

    Article  Google Scholar 

  40. Moretto, A. and Distel, R, Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gyneriodes, J. Arid Environ., 2003, vol. 55, pp. 503–514.

    Article  Google Scholar 

  41. Mulvaney, R.L., Khan, S.A., Stevens, W.B., and Mulvaney, C.S, Improved diffusion methods for determination of inorganic nitrogen in soil extracts and water, Biol. Fertility Soils, 1996, vol. 24, pp. 413–420.

    Article  Google Scholar 

  42. Picone, L., Quaglia, G., García, F., and Laterra, P, Biological and chemical response of a grassland soil to burning, J. Range Manag., 2003, vol. 56, pp. 291–297.

    Article  Google Scholar 

  43. Raison, R.J, Modification of the soil environment by vegetation fires, with particular reference to N transformations: A review, Plant Soil, 1979, vol. 51, pp. 73–108.

    CAS  Google Scholar 

  44. Renbuss, M.A., Chilvers, G.A., and Pryor, L.D, Microbiology of an ashbed, Proceedings of the Linnean Society of New South Wales, 1973, vol. 97, pp. 302–311.

    Google Scholar 

  45. Ritchie, M.E., Tilman, D., and Knops, J.M.H, Herbivore effects on plant and nitrogen dynamics in oak savanna, Ecology, 1998, vol. 79, pp. 165–177.

    Article  Google Scholar 

  46. Saint Pierre, C., Busso, C.A., Montenegro, O.A., Rodríguez, G.D., Giorgetti, H.D., Montani, T., and Bravo, O, Root proliferation in perennial grasses of low and high palatability, Plant Ecol., 2002, vol. 165, pp. 161–169.

    Article  Google Scholar 

  47. Saint Pierre, C., Busso, C.A., Montenegro, O.A, Rodríguez, G.D., Giorgetti, H.D., Montani, T., and Bravo, O., Direct assessment of competitive ability and defoliation tolerance in perennial grasses, Can. J. Plant Sci., 2004a, vol. 84, pp. 195–204.

    Article  Google Scholar 

  48. Saint Pierre, C., Busso, C.A., Montenegro, O.A., Rodríguez, G.D., Giorgetti, H.D., Montani, T., and Bravo, O, Defoliation tolerance and ammonium uptake rate in perennial tussock grasses, J. Range Manag., 2004b, vol. 57, pp. 82–88.

    Article  Google Scholar 

  49. Saint Pierre, C., Busso, C.A., Montenegro, O.A., Rodríguez, G.D., Giorgetti, H.D., Montani, T., and Bravo, O, Soil resource acquisition mechanisms, nutrient concentrations and growth in perennial grasses, Interciencia, 2004c, vol. 29, pp. 303–311.

    Google Scholar 

  50. Semmartin, M., Piñeiro, G., Altesor, A., and Paruelo, J, Efectos del pastoreo vacuno sobre la dinámica del nitrógeno y la biota del suelo en un pastizal subhúmedo, XXII Reunión Argentina de Ecología, Córdoba, 2006.

    Google Scholar 

  51. Sokal, R.R. and Rohlf, F.J., Introducción a la Bioestadística, Barcelona: Editorial Reverté S.A., 1984, p. 804.

    Google Scholar 

  52. Tilman, D. and Wedin, D, Dynamics of nitrogen competition between successional grasses, Ecology, 1991, vol. 72, pp. 1038–1049.

    Article  Google Scholar 

  53. Wan, S., Hui, D., and Luo, Y, Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A metaanalysis, Ecol. Appl., 2001, vol. 11, pp. 1349–1365.

    Article  Google Scholar 

  54. Wedin, D.A. and Pastor, J, Nitrogen mineralization dynamics in grass monocultures, Oecologia, 1993, vol. 96, pp. 186–192.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Busso.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ithurrart, L.S., Busso, C.A., Torres, Y.A. et al. Total soil available nitrogen under perennial grasses after burning and defoliation. Russ J Ecol 48, 122–133 (2017). https://doi.org/10.1134/S1067413617220015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413617220015

Keywords

Navigation