Skip to main content

The influence of forest/grassland proportion on the species composition, diversity and natural values of an eastern Austrian forest-steppe


Eastern Austrian forest-steppe remnants are extremey important both from conservation and a scientific perspective, yet case studies integrating the examination of the grassland and the forest components are relatively scarce. Consequently, the knowledge on how the pattern of forested vs. non-forested patches influences species composition and diversity remains rather limited. In this study, we compared three sites with different forest/grassland proportions: grassland with a low canopy cover, a mosaic area with alternating forest and grassland habitats, and a forest with some canopy gaps. Our aim was to find out which one of them is the best for conservation purposes. We found that the grassland and the mosaic area had a similar composition, while the forested one was distinct from them. The mosaic vegetation seemed to be the most species rich, also hosting a high number of red-listed species. Beside forest-related and grassland-related species, the mosaic plot also supported some edge-related plants. We conclude that the preservation of mosaic-like forest- grassland habitats is the most favorable for conservation aims. Nevertheless, several species, among them some red-listed ones, were clearly linked either to the forest or to the grassland plot. Therefore, even though mosaics deserve a special attention, open grasslands and xeric forests should also be preserved.

This is a preview of subscription content, access via your institution.


  1. 1.

    Magyari, E.K., Chapman, J.C., Passmore, D.G., Allen, J.R.M., Huntley, J.P., and Huntley, B., Holocene persistence of wooded steppe in the Great Hungarian Plain, J. Biogeogr., 2010, vol. 37, pp. 915–935.

    Article  Google Scholar 

  2. 2.

    Hoekstra, J.M., Boucher, T.M., Ricketts, T.H., and Roberts, C., Confronting a biome crisis: Global disparities of habitat loss and protection, Ecol. Lett., 2005, vol. 8, pp. 23–29.

    Article  Google Scholar 

  3. 3.

    Lavrenko, E.M., The steppes of the Eurasian steppe province, their geography, dynamics and history, Vop. Botaniki, 1954, vol. 1, pp. 155–191.

    Google Scholar 

  4. 4.

    Zólyomi, B., Pannonische Vegetationsprobleme, Verh. Zool.-Bot. Ges. Österreich, 1964, vol. 103/104, pp. 144–151.

    Google Scholar 

  5. 5.

    Borhidi, A., Kevey, B., and Lendvai, G. Plant Communities of Hungary, Budapest: Akadémiai Kiadó, 2012.

    Google Scholar 

  6. 6.

    Wendelberger, G., Saum-und Mantellgesellschaftn des pannonischen Raumes, Verh. Zool.-Bot. Ges. Österreich, 1986, vol. 124, pp. 41–46.

    Google Scholar 

  7. 7.

    Essl, F., Egger, G., Ellmauer, T., and Aigner, S., Rote Liste gefährdeter Biotoptypen Österreichs, Wälder, Forste, Vorwälder. Monographien (Umweltbundesamt), 2002, vol. 156, pp. 1–104.

    Google Scholar 

  8. 8.

    Niklfeld, H., Zur xerothermen Vegetation im Osten Niederösterreichs, Verh. Zool.-Bot. Ges. Wien, 1964, vol. 103/105, pp. 152–181.

    Google Scholar 

  9. 9.

    Zólyomi, B. and Fekete, G., The Pannonian loess steppe: Differentiation in space and time, Abstr. Bot., 1994, vol. 18, pp. 29–41.

    Google Scholar 

  10. 10.

    Molnár, Z., Biró, M., Bartha, S., and Fekete, G., Past trends, present state and future prospects of Hungarian forest-steppes, in Eurasian Steppes, Werger, M.J.A. and van Staalduinen, M.A., Eds., Berlin: Springer, 2012, pp. 209–252.

    Google Scholar 

  11. 11.

    Pokorný, P., Chytrý, M., Juricková, L., Sádlo, J., Novák, J., and Ložek, V., Mid-Holocene bottleneck for central European dry grasslands: Did steppe survive the forest optimum in northern Bohemia, Czech Republic?, The Holocene, 2015, vol. 25, pp. 716–726.

    Article  Google Scholar 

  12. 12.

    Kovács-Láng, E., Kröel-Dulay, Gy., Kertész, M., Fekete, G., Bartha, S., Mika, J., Dobi-Wantuch, I., Rédei, T., Rajkai, K., and Hahn, I., Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change, Phytocoenologia, 2000, vol. 30, pp. 385–407.

    Article  Google Scholar 

  13. 13.

    Wendelberger, G., Die Waldsteppen des pannonischen Raumes, Veröffentl. Geobot. Inst. Rübel Zürich, 1959, vol. 35, pp. 77–113.

    Google Scholar 

  14. 14.

    Eijsink, J., Ellenbroek, G., Holzner, W., and Werger, M.J.A., Dry and semi-dry grasslands in the Weinviertel, Lower Austria, Vegeatio, 1978, vol. 36, pp. 129–148.

    Google Scholar 

  15. 15.

    Sauberer, N. and Bieringer, G., Wald oder Steppe? Die Frage der natürlichen Vegetation des Steinfeldes, Stapfia, 2001, vol. 77, pp. 75–92.

    Google Scholar 

  16. 16.

    Walter, H. and Breckle, S.W., Walter’s Vegetation of the Earth, 4th ed., Berlin: Spinger, 2002.

    Google Scholar 

  17. 17.

    Kreuz, A., Closed forest or open woodland as natural vegetation in the surroundings of Linearbandkeramik settlements?, Veget. Hist. Archaeobot., 2008, vol. 17, pp. 51–64.

    Article  Google Scholar 

  18. 18.

    Willner, W., Starlinger, F., and Grabherr, G., Deciduous oak forests in Austria: Preliminary results from a new survey of the Austrian forest communities, Bot. Chron., 2005, vol. 18, pp. 301–316.

    Google Scholar 

  19. 19.

    Willner, W., Sauberer, N., Staudinger, M., and Schratt-Ehrendorfer, L., Syntaxonomic revision of the Pannonian grasslands of Austria: 1. Introduction and general overview, Tuexenia, 2013, vol. 33, pp. 399–420.

    Google Scholar 

  20. 20.

    Willner, W., Sauberer, N., Staudinger, M., Grass, V., Kraus, R., Moser, D., Rötzer, H., and Wrbka, T., Syntaxonomic revision of the Pannonian grasslands of Austria: 2. Vienna Woods (Wienerwald), Tuexenia, 2013, vol. 33, pp. 421–458.

    Google Scholar 

  21. 21.

    Erdos, L., Tölgyesi, Cs., Horzse, M., Tolnay, D., Hurton, Á., Schulcz, N., Körmöczi, L., Lengyel, A., and Bátori, Z., Habitat complexity of the Pannonian forest–steppe zone and its nature conservation implications, Ecol. Complex., 2014, vol. 17, pp. 107–118.

    Article  Google Scholar 

  22. 22.

    Erdos, L., Tölgyesi, Cs., Cseh, V., Tolnay, D., Cserhalmi, D., Körmöczi, L., Gellény, K., and Bátori, Z., Vegetation history, recent dynamics and future prospects of a Hungarian sandy forest–steppe reserve: Forest-grassland relations, tree species composition and size-class distribution, Commun. Ecol., 2015a, vol. 16, pp. 95–105.

    Article  Google Scholar 

  23. 23.

    Bartha, S., Campetella, G., Ruprecht, E., Kun, A., Házi, J., Horváth, A., Virágh, K., and Molnár, Zs., Will interannual variability in sand grassland communities increase with climate change?, Commun. Ecol., 2008, vol. 9, pp. 13–21.

    Article  Google Scholar 

  24. 24.

    Erdos, L., Gallé, R., Körmöczi, L., and Bátori, Z., Species composition and diversity of natural forest edges: Edge responses and local edge species, Commun. Ecol., 2013, vol. 14, pp. 48–58.

    Article  Google Scholar 

  25. 25.

    Erdos, L., Tölgyesi, Cs., Körmöczi, L., and Bátori, Z., The importance of forest patches in supporting steppespecies: A case study from the Carpathian Basin, Pol. J. Ecol., 2015b, vol. 63, pp. 213–222.

    Article  Google Scholar 

  26. 26.

    Zentralanstalt für Meteorologie und Geodynamik Klimadaten von Österreich 1971–2000, 2012. http://www.zamg.ß00/klima2000/klimadaten_oesterreich_ 1971_frame1.htm.

  27. 27.

    Starlinger F. Quercion pubescenti-petraeae Br. Bl. 1932, in Die Wälder und Gebüsche Österreichs. 1 Textband, Willner, W. and Grabherr, G., Eds., München: Spektrum Akademischer Verlag, 2007, pp. 96–109.

    Google Scholar 

  28. 28.

    Kasy, F., Die Schmetterlingsfauna des Naturschutzgebietes “Glaslauterriegel-Heferlberg,” südlich von Wien, Zeitschrift der Arbeitsgemeinschaft Österr. Entomologen, 1987, vol. 38 (Suppl.), pp. 1–35.

    Google Scholar 

  29. 29.

    Fischer, M.A., Oswald, K., and Adler, W., Exkursionsflora für Österreich, Liechtenstein und Südtirol, 3rd ed., Linz: Biologiezentrum der Oberösterreichischen Landesmuseen, 2008.

    Google Scholar 

  30. 30.

    Hill, M.O. and Gauch, H.G., Detrended Correspondence Analysis: An improved ordination technique, Vegetatio, 1980, vol. 42, pp. 47–58.

    Article  Google Scholar 

  31. 31.

    Šmilauer, P. and Lepš, J., Multivariate Analysis of Ecological Data using Canoco 5, 2nd ed., Cambridge: Cambridge Univ. Press, 2014.

    Book  Google Scholar 

  32. 32.

    Niklfeld, H. and Schratt-Ehrendorfer, L., Rote Liste gefährdeter Farn-und Blütenpflanzen (Pteridophyta und Spermatophyta) Österreichs, in Rote Liste gefährdeter Pflanzen Österreichs, 2nd ed., Niklfeld, H., Ed., Graz: Austria Media Service, 1999, pp. 33–152.

    Google Scholar 

  33. 33.

    Tichý, L. and Chytrý, M., Statistical determination of diagnostic species for site groups of unequal size, J. Veg. Sci., 2006, vol. 17, pp. 809–818.

    Article  Google Scholar 

  34. 34.

    Tichý, L., JUICE, software for vegetation classification, J. Veg. Sci., 2002, 13, pp. 451–453.

    Article  Google Scholar 

  35. 35.

    Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, pp. 1–9. issue1_01.htm.

    Google Scholar 

  36. 36.

    Tóthmérész, B., Comparison of different methods for diversity ordering, J. Veg. Sci., 1995, vol. 6, pp. 283–290.

    Article  Google Scholar 

  37. 37.

    House, J.I., Archer, S., Breshears, D.D., and Scholes, R.J., Conundrums in mixed woody-herbaceous plant systems, J. Biogeogr., 2003, vol. 30, pp. 1763–1777.

    Article  Google Scholar 

  38. 38.

    Breshears, D., The grassland-forest continuum: Trends in ecosystem properties for woody plant mosaics?, Front. Ecol. Environ., 2006, vol. 4, pp. 96–104.

    Article  Google Scholar 

  39. 39.

    ter Braak, C.J.F. and Šmilauer, P., CANOCO Reference Manual and User’s Guide: Software for Ordination, Version 5.0, Ithaca, NY: Microcomputer Power, 2012.

    Google Scholar 

  40. 40.

    Hejcman, M., Hejcmanová, P., Pavlú, V., and Beneš, J., Origin and history of grasslands in central Europe: A review, Grass Forage Sci., 2013, vol. 68, pp. 345–363.

    Article  Google Scholar 

  41. 41.

    Birks, H.J.B., Mind the gap: How open were European primeval forests?, Trends Ecol. Evol., 2005, vol. 20, pp. 151–154.

    Article  Google Scholar 

  42. 42.

    Mitchell. F.J.G. How open were European primeval forests? Hypothesis testing using palaeoecological data, J. Ecol., 2005, vol. 93, pp. 168–177.

    Article  Google Scholar 

  43. 43.

    Poschlod, P., Geschichte der Kulturlandschaft, Stuttgart: Eugen Ulmer, 2015.

    Google Scholar 

  44. 44.

    Vild, O., Rolecek, J., Hédl, R., Kopecký, M., and Utinek, D., Experimental restoration of coppice-withstandards: Response of understorey vegetation from the conservation perspective, For. Ecol. Manag., 2013, vol. 310, pp. 234–241.

    Article  Google Scholar 

  45. 45.

    Borhidi, A., Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora, Acta Bot. Hung., 1995, vol. 39, pp. 97–181.

    Google Scholar 

  46. 46.

    Hutchinson, G.E., The paradox of the plankton, Am. Nat., 1961, vol. 95, pp. 137–145.

    Article  Google Scholar 

  47. 47.

    Levin, S.A., Dispersion and population interactions, Am. Nat., 1974, vol. 108, pp. 207–228.

    Article  Google Scholar 

  48. 48.

    Tilman, D., Lehman, C.L., and Thomson, K.T., Plant diversity and ecosystem productivity: Theoretical considerations, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 1857–1861.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Weltzin, J.F. and Coughenour, M.B., Savanna tree influence on understory vegetation and soil nutrients in northwestern Kenya, J. Veg. Sci., 1990, vol. 1, pp. 325–334.

    Article  Google Scholar 

  50. 50.

    Whittaker, R.H., Gilbert, L.E., and Connell, J.H., Analysis of two-phase pattern in a mesquite grassland, Texas J. Ecol., 1979, vol. 67, pp. 935–952.

    Article  Google Scholar 

  51. 51.

    Vetaas, O.R., Micro-site effects of trees and shrubs in dry savannas, J. Veg. Sci., 1992, vol. 3, pp. 337–344.

    Article  Google Scholar 

  52. 52.

    Leach, M.K. and Givnish, T.J., Gradients in the composition, structure, and diversity of remnant oak savannas in southern Wisconsin, Ecol. Monogr., 1999, vol. 69, pp. 353–374.

    Article  Google Scholar 

  53. 53.

    Peterson, D.W. and Reich, P.B., Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone, Plant Ecol., 2008, vol. 194, pp. 5–16.

    Article  Google Scholar 

  54. 54.

    Bartha, S., Campetella, G., Kertész, M., Hahn, I., Kroel-Dulay, Gy., Rédei, T., Kun, A., Virágh, K., Fekete, G., and Kovács-Láng, E., Beta diversity and community differentiation in dry perennial sand grasslands, Ann. Bot., 2011, vol. 1, pp. 9–18.

    Google Scholar 

  55. 55.

    Ratter, J.A., Ribeiro, J.F., and Bridgewater, S., The Brazilian Cerrado vegetation and threats to its biodiversity, Ann. Bot., 1997, vol. 80, pp. 223–230.

    Article  Google Scholar 

  56. 56.

    Silva, J.M.C. and Bates, J.M., Biogeographic patterns and conservation in the South American Cerrado: A tropical savanna hotspot, BioScience, 2002, vol. 52, pp. 225–233.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. Erdős.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erdős, L., Tölgyesi, C., Bátori, Z. et al. The influence of forest/grassland proportion on the species composition, diversity and natural values of an eastern Austrian forest-steppe. Russ J Ecol 48, 350–357 (2017).

Download citation


  • habitat heterogeneity
  • spatial pattern
  • xeric communities
  • conservation