Russian Journal of Ecology

, Volume 47, Issue 5, pp 508–513 | Cite as

A new field method for measuring forest litter respiration rate

  • I. A. SmorkalovEmail author
Short Communications


soil respiration litter respiration in situ measurements forest litter carbon cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ataka, M., Kominami, Y., Yoshimura, K., et al., In situ CO2 efflux from leaf litter layer showed large temporal variation induced by rapid wetting and drying cycle, PLOS ONE, 2014a, vol. 9, no. 10, e108404.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ataka, M., Kominami, Y., Jomura, M., et al., CO2 efflux from leaf litter focused on spatial and temporal heterogeneity of moisture, J. Forest Res. (Japan), 2014b, vol. 19, no. 2, pp. 295–300.CrossRefGoogle Scholar
  3. Atarashi-Andoh, M., Koarashi, J., Ishizuka, S., and Hirai, K., Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agr. Forest Meteorol., 2012, vol. 152, no. 1, pp. 149–158.Google Scholar
  4. Berryman, E.M., Marshall, J.D., and Kavanagh, K., Decoupling litter respiration from whole-soil respiration along an elevation gradient in a rocky mountain mixedconifer forest, Can. J. For. Res., 2014, vol. 44, no. 5, pp. 432–440.CrossRefGoogle Scholar
  5. Boone, R.D., Nadelhoffer, K.J., Canary, J.D., and Kaye, J.P., Roots exert a strong influence on the temperature sensitivity of soil respiration, Nature, 1998, vol. 396, no. 6711, pp. 570–572.CrossRefGoogle Scholar
  6. DeForest, J.L., Chen, J., and McNulty, S.G., Leaf litter is an important mediator of soil respiration in an oak-dominated forest, Int. J. Biometeorol., 2009, vol. 53, no. 2, pp. 127–134.CrossRefPubMedGoogle Scholar
  7. Joos, O., Hagedorn, F., Heim, A., et al., Summer drought reduces total and litter-derived soil CO2 effluxes in temperate grassland: Clues from a 13C litter addition experiment, Biogeosciences, 2010, vol. 7, no. 3, pp. 1031–1-41.CrossRefGoogle Scholar
  8. Kadulin, M.S. and Koptsik, G.N., Emission of CO2 by soils in the impact zone of the Severonikel smelter in the Kola Subarctic region, Euras. Soil Sci., 2013, no. 11, pp. 1107–1116.CrossRefGoogle Scholar
  9. Kominami, Y., Jomura, M., Ataka, M., et al., Heterotrophic respiration causes seasonal hysteresis in soil respiration in a warm-temperate forest, J. Forest Res., 2011, vol. 17, no. 3, pp. 296–304.CrossRefGoogle Scholar
  10. Luo, Y. and Zhou, X., Soil Respiration and the Environment, Burlington: Academic Press, 2006.Google Scholar
  11. Luo, S., Liu, G., and Li, Z., Partitioning of soil respiration in a trenching experiment in the subalpine forests of China, J. Food Agric. Environ., 2014, vol. 12, no. 1, pp. 368–373.Google Scholar
  12. Metcalfe, D.B., Meir, P., Aragão, L.E.O.C., et al., Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon, J. Geophys. Res.–Biogeo, 2007, vol. 112, no. 4, G04001.Google Scholar
  13. Ngao, J., Epron, D., Brechet, C., and Granier, A., Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter, Global Change Biol., 2005, vol. 11, no. 10, pp. 1768–1776. Prévost-Bouré, N.C., Soudani, K.CrossRefGoogle Scholar
  14. Damesin, C., et al., Increase in aboveground fresh litter quantity over-stimulates soil respiration in a temperate deciduous forest, Appl. Soil Ecol., 2010, vol. 46, no. 1, pp. 26–34.CrossRefGoogle Scholar
  15. Smorkalov, I.A., Methodological problems of separating carbon dioxide fluxes from the soil in the field: Determination of contribution from litter respiration, Ekologiya: skvoz' vremya i rasstoyanie: Mat-ly konf. (Ecology: Through Time and Distance, Proc. Conf.), Yekaterinburg, 2011, pp. 185–186.Google Scholar
  16. Smorkalov, I.A. and Vorobeichik, E.L., Effect of industrial heavy metal pollution on forest litter respiration, Izv. OGAU, 2012, vol. 37, no. 5, pp. 224–227.Google Scholar
  17. Smorkalov, I.A. and Vorobeichik, E.L., Mechanism of stability of CO2 emission from forest litter in an industrial pollution gradient, Lesovedenie, 2016, no. 1, pp. 43–43.Google Scholar
  18. Sulzman, E.W., Brant, J.B., Bowden, R.D., and Lajtha, K., Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest, Biogeochemistry, 2005, vol. 73, no. 1, pp. 231–256.CrossRefGoogle Scholar
  19. Tewary, C.K., Pandey, U., and Singh, J.S., Soil and litter respiration rates in different microhabitats of a mixed oak–conifer forest and their control by edaphic conditions and substrate quality, Plant Soil, 1982, vol. 65, no. 2, pp. 233–238.CrossRefGoogle Scholar
  20. Vorobeichik E.L., Changes in thickness of forest litter under chemical pollution, Russ. J. Ecol., 1995, vol. 26. no. 4, pp. 252–258.Google Scholar
  21. Wang, Y., Wang, H., Ma, Z., et al., Contribution of aboveground litter decomposition to soil respiration in a subtropical coniferous plantation in southern China, Asia-Pac. J. Atmos. Sci., 2009, vol. 45, no. 2, pp. 137–147.Google Scholar
  22. Wu, Z., Guan, L., Chen, B., et al., Components of soil respiration and its monthly dynamics in rubber plantation ecosystems, Res. J. Appl. Sci. Eng. Technol., 2014, vol. 7, no. 5, pp. 1040–1048.Google Scholar
  23. Xiao, W., Ge, X., Zeng, L., et al., Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the three gorges reservoir area, China, PLOS ONE, 2014, vol. 9, no. 7, e101890.CrossRefGoogle Scholar
  24. Zhang, X., Mao, R., Gong, C., et al., CO2 evolution from standing litter of the emergent macrophyte Deyeuxia angustifolia in the Sanjiang Plain, Northeast China, Ecol. Eng., 2014, vol. 63, pp. 45–49.CrossRefGoogle Scholar
  25. Zimmermann, M., Meir, P., Bird, M., et al., Litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest, Soil Biol. Biochem., 2009, vol. 41, no. 6, pp. 1338–1340.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations