Skip to main content
Log in

Assessment of nonselective elimination effects in rodent communities by methods of geometric morphometrics

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Methods of geometric morphometrics and population phenogenetics have been used to evaluate morphogenetic rearrangements in two sympatric species of Myodes voles (M. glareolus Schreb. 1780 and M. rutilus Pall. 1779) from syntopic populations recovering after exposure to local “ecological vacuum” created as a result of rodent extermination in a natural focus of hemorrhagic fever in the southern taiga subzone of the Udmurt Republic. The model used in the study simulates the situation that arises upon nonselective elimination of rodent populations and communities in spring and their subsequent recovery. Analysis of variation in the size and shape of the mandible and in a complex of 30 nonmetric cranial characters has revealed similar (parallel) and species-specific morphogenetic and epigenetic changes occurring during the recovery of local rodent community. Species-specific differences in the pattern of change in the parameter characterizing within-group morphological disparity in the mandible shape (MNND) have been revealed between the dominant species (M. glareolus) and the subdominant species competing with it for territory (M. rutilus). Different reactions of close Myodes species in the course of filling the ecological vacuum are considered as a result of reduction in the level of competition for the subdominant species and a compensatory increase of morphological disparity in the dominant species under conditions of low density and incomplete composition of the community, in accordance with Chernov’s (2005) ecological compensation principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berry, R.J. and Searle, A.G., Epigenetic polymorphism of the rodent skeleton, Proc. Zool. Soc. London, 1963, vol. 140, pp. 557–615.

    Google Scholar 

  • Bol’shakov, V.N. and Vasil’ev, A.G., A comparative study of insular and continental populations on the northern redbacked vole, Clethrionomys rutilus Pall.: A probable role of the “founder principle,” Zh. Obshch. Biol., 1976, vol. 37, no. 3, pp. 378–385.

    Google Scholar 

  • Bol’shakov, V.N., Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Coupled biotopic variation in populations of sympatric rodent species in the Southern Urals, Russ. J. Ecol., 2015, vol. 46, no. 4, pp. 339–344.

    Article  Google Scholar 

  • Chernov, Yu.I., Species diversity and compensatory phenomena in communities and biological systems, Zool. Zh., 2005, vol. 84, no. 10, pp. 1221–1238.

    Google Scholar 

  • Duncan, E.J., Gluckman, P.D., and Dearden, P.K., Epigenetics, plasticity and evolution: How do we link epigenetic change to phenotype?, J. Exp. Zool. B: Mol. Dev. Evol., 2014, vol. 322B, pp. 208–220.

    Google Scholar 

  • Evdokimov, N.G., Studies on mechanisms of abundance recovery in an artificially thinned rodent population of forest biocenosis, in Populyatsionnaya ekologiya i izmenchivost’ zhivotnykh (Animal Population Ecology and Variation), Sverdlovsk: Ural. Nauch. Tsentr Akad. Nauk SSSR, 1979, pp. 84–95.

    Google Scholar 

  • Hammer, Ø., New statistical methods for detecting point alignments, Comput. Geosci., 2009, vol. 35, no. 3, pp. 659–666.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D.A.T. and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1.

  • Hutchinson, G.E., A Treatise on Limnology, New York: Wiley, 1967.

    Google Scholar 

  • Jablonka, E. and Raz, G., Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution, Quart. Rev. Biol., 2009, vol. 84, pp. 131–176.

    Google Scholar 

  • Koshkina, T.V., Okulova, N.M., and Aristova, V.A., Territorial relationships in rodents and their role in population density regulation, in Osnovnye problemy teriologii (Basic Problems in Theriology), Tr. Mosk. O-va Ispyt. Prir., Otd. Biol., no. 48, Moscow: Nauka, 1972, pp. 215–237.

    Google Scholar 

  • Ledón-Rettig, C.C., Ecological epigenetics: An introduction to the symposium, Integr. Comp. Biol., 2013, vol. 53, no. 2, pp. 307–318.

    Article  PubMed  Google Scholar 

  • Lee, Y.S., Markov, N., Voloshina, I., and Argunov, A., Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia, BMC Genet., 2015, vol. 16, no. 100, pp. 1–15.

    Google Scholar 

  • Klingenberg, C.P., MorphoJ: An integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, pp. 353–357.

    Article  PubMed  Google Scholar 

  • Mayr, E., Animal Species and Evolution, Harvard: Harvard Univ. Press, 1963. Translated under the title Zoologicheskii vid i evolyutsiya, Moscow: Mir, 1968.

    Book  Google Scholar 

  • Nei, M., Maruyama, T., and Chakraborty, R., The bottleneck effect and variability in populations, Evolution, 1975, vol. 29, pp. 1–10.

    Article  Google Scholar 

  • Nikolaev, I.I., Taxocene as an ecological category, Ekologiya, 1977, no. 5, pp. 50–55.

    Google Scholar 

  • Rohlf, F.J., TpsUtil, File Utility Program, Version 1.60, Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2013a.

    Google Scholar 

  • Rohlf, F.J., TpsDig2, Digitize Landmarks and Outlines, Version 2.17, Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2013b.

    Google Scholar 

  • Rohlf, F.J. and Slice, D., Extension of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool., 1990, vol. 39, no. 1, pp. 40–59.

    Article  Google Scholar 

  • Salamin, N., Wüest R.O., Lavergne, S., et al., Assessing rapid evolution in a changing environment, Trends Ecol. Evol., 2010, vol. 25, no. 12, pp. 692–698.

    Article  PubMed  Google Scholar 

  • Saul, W.-C. and Jeschke, J.M., Eco-evolutionary experience in novel species interactions, Ecol. Lett., 2015, vol. 18, pp. 236–245.

    Article  PubMed  Google Scholar 

  • Saul, W.-C., Jeschke, J.M., and Heger, T., The role of ecoevolutionary experience in invasion success, NeoBiota, 2013, vol. 17, pp. 57–74.

    Article  Google Scholar 

  • Sheets, H.D. and Zelditch, M.L., Studying ontogenetic trajectories using resampling methods and landmark data, Hystrix: Ital. J. Mammal., 2013, vol. 24, no. 1, pp. 67–74.

    Google Scholar 

  • Shvarts, S.S., Evolyutsionnaya ekologiya zhivotnykh: ekologicheskie mekhanizmy evolyutsionnogo protsessa (Evolutionary Ecology of Animals: Ecological Mechanisms of the Evolutionary Process), Sverdlovsk: Ural Fil. Akad, Nauk SSSR, 1969.

    Google Scholar 

  • Timofeeff-Ressovsky, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (A Brief Essay on the Theory of Evolution), Moscow: Nauka, 1969.

    Google Scholar 

  • Vasil’ev, A.G., Epigeneticheskie osnovy fenetiki: na puti k populyatsionnoi meronomii (Epigenetic Bases of Phenetics: On the Way to Population Meronomy), Yekaterinburg: Akademkniga, 2005.

    Google Scholar 

  • Vasil’ev, A.G. and Vasil’eva, I.A., Gomologicheskaya izmenchivost’ morfologicheskikh struktur i epigeneticheskaya divergentsiya taksonov: osnovy populyatsionnoi meronomii (Homological Variation of Morphological Structures and Epigenetic Divergence of Taxa: Bases of Population Meronomy), Moscow: KMK, 2009.

    Google Scholar 

  • Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Coupled technogenic morphological variation of two sympatric rodent species in the zone of influence from the Eastern Ural Radioactive Trace, Vopr. Radiats. Bezopasn., 2013, no. 4, pp. 4–13.

    Google Scholar 

  • Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vasil’ev.

Additional information

Original Russian Text © A.G. Vasil’ev, V.N. Bol’shakov, I.A. Vasil’eva, N.G. Evdokimov, N.V. Sineva, 2016, published in Ekologiya, 2016, No. 4, pp. 290–299.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.G., Bol’shakov, V.N., Vasil’eva, I.A. et al. Assessment of nonselective elimination effects in rodent communities by methods of geometric morphometrics. Russ J Ecol 47, 383–391 (2016). https://doi.org/10.1134/S1067413616040159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413616040159

Keywords

Navigation