Skip to main content
Log in

The toxicity of engineered nanoparticles on seed plants chronically exposed to low-level environmental radiation

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Nothing is known about how plant populations chronically exposed to radiation adapt to a new anthropogenic stressor as engineered nanoparticles (ENP). A set of ecotoxicity tests was conducted with five types of ENP to investigate seed response of Leonurus quinquelobatus populations growing naturally under low-dose irradiation and background conditions. Five day toxicity tests detect the combined stimulation positive effects of irradiation stress with two types of ENP on seed germination. All of these effects are smoothed in 21 day old seedlings or reveal the significant adverse effects in three of the ENP. The commonly increased mutation load at the radiation pollution area synergistically increases fourfold to eightfold after TiO2 nanoparticle suspension exposure at 0.5–10 mM. These findings highlight the response on the combined nanoparticle and ionizing radiation influence on plant systems in the wild indicating that the environmental risk assessment of 4 of 5 ENP needs to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antonova, E.V., Karimullina, E.M., and Pozolotina, V.N., Intraspecific variation in Melandrium album along a radioactive contamination gradient at the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2013, vol. 44, no. 1, pp. 18–27.

    Article  Google Scholar 

  • Beresford, N., Brown, J., Copplestone, D., et al., D-ERICA: An Integrated Approach to the Assessment and Management of Environmental Risk from Ionizing Radiation. Description of Purpose, Methodology and Application. A Deliverable Report for the Project “ERICA” (Contract No. FI6R-CT-2004-508847) within the EC’s VI Framework Programme, Stockholm: Swedish Radiation Protection Authority, 2007.

    Google Scholar 

  • Brown, J.E., Alfonso, B., Avila, R., et al., The ERICA tool, J. Environ. Radioact., 2008, vol. 99, no. 9, pp. 1371–1383.

    Article  CAS  PubMed  Google Scholar 

  • Burklew, C.E., Ashlock, J., Winfrey, W.B., and Zhang, B., Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum), PLoS ONE, 2012, vol. 7, no. 5, e34783.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burlakova, E.B., Role of antioxidants in physical and chemical processes of cell reproduction regulation, in Fiziko-khimicheskie osnovy avtoregulyatsii v kletkakh (The Physical and Chemical Bases of Self-regulation in Cells), Moscow: Nauka, 1968.

    Google Scholar 

  • Ekologicheskie posledstviya radioaktivnogo zagryazneniya na Yuzhnoi Urale (Ecological Consequences of Radioactive Contamination in the Southern Urals), Sokolov, V.E. and Krivolutskii, D.A., Eds., Moscow: Nauka, 1993.

    Google Scholar 

  • Grime, J.P., Plant Strategies, Vegetation Processes, and Ecosystem Properties, Chichester: Wiley, 2006.

    Google Scholar 

  • Karimullina, E., Antonova, E., and Pozolotina, V., Assessing radiation exposure of herbaceous plant species at the East-Ural Radioactive Trace, J. Environ. Radioact., 2013, vol. 124, pp. 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Klaine, S.J., Alvarez, P.J., Batley, G.E., et al., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 2008, vol. 27, no. 9, pp. 1825–1851.

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk, I., Abramov, V., Pogribny, I., et al., Molecular aspects of plant adaptation to life in the Chernobyl zone, Plant Physiol., 2004, vol. 135, no. 1, pp. 357–363.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurepa, J., Paunesku, T., Vogt, S., et al., Uptake and distribution of ultrasmall anatase TiO2 Alizarin Red S nanoconjugates in Arabidopsis thaliana, Nano Lett., 2010, vol. 10, no. 7, pp. 2296–2302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsson, C.M., An overview of the ERICA integrated approach to the assessment and management of environmental risks from ionizing contaminants, J. Environ. Radioact., 2008, vol. 99, no. 9, pp. 1364–1370.

    Article  CAS  PubMed  Google Scholar 

  • Lin, D. and Xing, B., Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth, Environ. Pollut., 2007, vol. 150, no. 2, pp. 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moreno, M.L., de la Rosa, G., Hernandez-Viezcas, J.A., et al., X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species, J. Agric. Food Chem., 2010, vol., 58, no. 6, pp. 3689–3693.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., and Haynes, C.L., Toxicity of engineered nanoparticles in the environment, Anal. Chem., 2013, vol., 85, no. 6, pp. 3036–3049.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazumdar, H. and Ahmed, G.U., Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiata, and Brassica campestris, Int. J. Adv. Biotechnol. Res., 2011, vol. 2, no. 4, pp. 404–413.

    CAS  Google Scholar 

  • Mirzajani, F., Askari, H., Hamzelou, S., et al., Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria, Ecotoxicol. Environ. Saf., 2013, vol. 88, pp. 48–54.

    Article  CAS  PubMed  Google Scholar 

  • Molchanova, I., Mikhailovskaya, L., Antonov, K., et al., Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace, J. Environ. Radioact., 2014, vol. 138, pp. 238–248.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, E., Piccapietra, F., Wagner, B., et al., Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol., 2008, vol. 42, no. 23, pp. 8959–8964.

    Article  CAS  PubMed  Google Scholar 

  • Nel, A. and Xia, T., Mädler, L., and Li, N., Toxic potential of materials at the nanolevel, Science, 2006, vol. 311, no. 5761, pp. 622–627.

    Article  CAS  PubMed  Google Scholar 

  • Nel, A.E., Mädler, L., Velegol, D., et al., Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater., 2009, vol. 8, no. 7, pp. 543–557.

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel, L.R. and Dubey, B., Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles, Sci. Tot. Environ., 2013, vols. 452–453, pp. 321–332.

    Article  Google Scholar 

  • Pozolotina, V.N., Molchanova, I.V., Karavaeva, L.N., et al., Sovremennoe sostoyanie nazemnykh ekosistem zony Vostochno-Ural’skogo radioaktivnogo sleda (The Current State of Terrestrial Ecosystems in the Eastern Ural Radioactive Trace Zone), Yekaterinburg: Goshchiskii, 2008.

    Google Scholar 

  • Pozolotina, V.N., Antonova, E.V., Karimullina, E.M., et al., The impacts of permanent irradiation on the flora of the Eastern Ural Radioactive Trace, Radiats. Biol. Radioecol., 2009, vol. 49, no. 1, pp. 97–106.

    CAS  PubMed  Google Scholar 

  • Pozolotina, V.N., Antonova, E.V., and Karimullina, E.M., Assessment of radiation impact on Stellaria graminea cenopopulations in the zone of the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2010, vol. 41, no. 6, pp. 459–468.

    Article  Google Scholar 

  • Pozolotina, V.N., Molchanova, I.V., Mikhaylovskaya, L.N., et al., The current state of terrestrial ecosystems in the Eastern Ural Radioactive Trace, in Radionuclides: Sources, Properties and Hazards, Gerada, J.G., Ed., New York: Nova Science, 2012, pp. 1–22.

    Google Scholar 

  • Rakhmankulova, Z.F., Fedyaev, V.V., Podashevka, O.A., and Usmanov, I.Y., Alternative respiration pathways and secondary metabolism in plants with different adaptive strategies under mineral deficiency, Russ. J. Plant Physiol., 2003, vol. 50, pp. 206–212.

    Article  CAS  Google Scholar 

  • Rao, S. and Shekhawat, G.S., Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea, J. Environ. Chem. Eng., 2014, vol. 2, no. 1, pp. 105–114.

    Article  CAS  Google Scholar 

  • Reardon, S., Fukushima radiation creates unique test of marine life’s hardiness, Science, 2011, vol. 332, no. 6027, p. 292.

    Article  CAS  PubMed  Google Scholar 

  • Riley, P.A., Free radicals in biology: Oxidative stress and the effects of ionizing radiation, Int. J. Rad. Biol., 1994, vol. 65, no. 1, pp. 27–33.

    Article  CAS  PubMed  Google Scholar 

  • Stern, S.T. and McNeil, S.E., Nanotechnology safety concerns revisited, Tox. Sci., 2008, vol. 101, no. 1, pp. 4–21.

    Article  CAS  Google Scholar 

  • Theng, B.K. and Yuan, G., Nanoparticles in the soil environment, Elements, 2008, vol. 4, no. 6, pp. 395–399.

    Article  CAS  Google Scholar 

  • Thuesombat, P., Hannongbua, S., Akasit, S., and Chadchawan, S., Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth, Ecotox. Environ. Saf., 2014, vol. 104, pp. 302–309.

    Article  CAS  Google Scholar 

  • Tsvetaeva, N.E., Filin, V.M., Ivanova, L.A., et al., Use of monoisooctylmethylphosphonic acid and its trivalent iron salt in determining radionuclides in effluents, Sov. Atom. Energy, 1984, vol. 57, no. 2, pp. 548–552.

    Article  Google Scholar 

  • Warfield, D.L., Nilan, R.A., and Witters, R.E., The effect of ethylene and ionizing radiation on Saintpaulia peroxidase activity, Radiat. Bot., 1975, vol. 15, no. 4, pp. 423–429.

    Article  CAS  Google Scholar 

  • Yang, L. and Watts, D.J., Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett., 2005, vol. 158, no. 2, pp. 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S., Lin, K., Xu, S., et al., Ecotoxicological effects of multiscale nano-SiO2 and its critical value on rice, J. Agro-Environ. Sci., 2009, vol. 1, pp. 30–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Karimullina.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimullina, E., Antonova, E., Pozolotina, V. et al. The toxicity of engineered nanoparticles on seed plants chronically exposed to low-level environmental radiation. Russ J Ecol 46, 236–245 (2015). https://doi.org/10.1134/S1067413615030054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413615030054

Keywords

Navigation