Russian Journal of Ecology

, Volume 46, Issue 2, pp 143–151 | Cite as

Variability of ground CO2 concentration in the middle taiga subzone of the Yenisei region of Siberia

  • A. V. Timokhina
  • A. S. Prokushkin
  • A. A. Onuchin
  • A. V. Panov
  • G. B. Kofman
  • M. Heimann
Article
  • 96 Downloads

Abstract

The results of measurements of ground CO2 concentration in the middle taiga subzone of the Yenisei region of Siberia (the ZOTTO observatory) in 2009 to 2012 are presented. Specific features of CO2 variability over the altitude profile up to 301 m are accounted for by specific diurnal and seasonal features in the functioning of terrestrial ecosystems as well as by atmospheric processes. It has been shown that the significance of regional and global components increases with elevation, while the contribution of the underlying surface in the region of the observatory decreases. The observed gradient differences between CO2 concentrations recorded at the onset and at the end of the cold period are explained by seasonal changes in the height of the atmospheric boundary layer. Comparison of data obtained at the ZOTTO observatory and at monitoring stations in Canada and the North Atlantic has shown that general trends in the seasonal variability of CO2 are similar and that specific features of the processes under study are dependent on biogeographic characteristics of the study regions.

Keywords

atmospheric CO2 middle taiga subzone Yenisei region of Siberia ZOTTO observatory boreal forests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arshinov, M.Yu., Belan, B.D., Davydov, D.K., et al., Dynamics of vertical distribution of greenhouse gases in the atmosphere, Opt. Atmos. Okeana, 2012, vol. 22, no. 12, pp. 1051–1061.Google Scholar
  2. Bakwin, P.S., Tans, P.P., Hurst, D.F., et al., Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program, Tellus, 1998, no. 50B, pp. 401–415.Google Scholar
  3. Chen, B. and Chen, J., Interannual variability in the CO2 rectification over a boreal forest region, J. Geophys. Res., 2005, vol. 110, D16301. doi 10.1029/2004JD005546CrossRefGoogle Scholar
  4. Elanskii, N.F., Mokhov, I.I., Belikov, I.B., Berezina, E.V., Elokhov, A.S., Ivanov, V.A., Pankratova, N.V., Postylyakov, O.V., Safronov, A.N., Skorokhod, A.I., and Shumsky, R.A., Gas composition of the surface air in Moscow during the extreme summer of 2010, Dokl. Earth Sci., 2011, vol. 437, no. 1, pp. 357–362.CrossRefGoogle Scholar
  5. Environment Canada Web. http://www.ec.gc.ca/.
  6. Friedlingstein, P., Dufrense, J.-L., Cox, P.M., et al., How positive is the feedback between climate change and the carbon cycle?, Tellus, 2003, no. 55, pp. 692–700.Google Scholar
  7. Gloor, M., Bakwin, P., Hurst, D., et al., What is the concentration footprint of a tall tower?, J. Geophys. Res., 2001, no. 106 (D16), pp. 17831–17840.Google Scholar
  8. Higuchi, K., Worthy, D., Chan, D., et al., Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest in Canada, Tellus, 2003, no. 55B, p. 115–125.Google Scholar
  9. Huntingfort, C., Lowe, J.A., Booth, B.B.B., et al., Contributions of carbon cycle uncertainty to future climate projection spread, Tellus, 2009, no. 61B, pp. 355–360.Google Scholar
  10. Klimchenko, A.V., Verkhovets, S.V., Slinkina, O.A., et al., Stocks of coarse woody debris in middle taiga ecosystems of the Yenisei region of Siberia, Geogr. Prir. Resursy., 2011, no. 2, pp. 91–97.Google Scholar
  11. Kozlova, E.A., Manning, A.C., Kisilyakhov, Y., et al., Seasonal, synoptic, and diurnal-scale variability of biogeochemical trace gases and O2 from a 300-m tall tower in central Siberia, Global Biogeochem. Cycles, 2008, no. 22, pp. 1–16. doi 10.1029/2008GB003209Google Scholar
  12. Lee, D.F., Fuentes, J.D., Staebler, R.M., et al., Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada, J. Geophys. Res., 1999, vol. 104, no. D13, pp. 15.975–15.984.CrossRefGoogle Scholar
  13. Lesnye ekosistemy Eniseiskogo meridiana (Forest Ecosystems along the Yenisei Meridian) Pleshikov, F.I., Vaganov, E.A., and Vedrova, E.F., Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2002.Google Scholar
  14. Lloyd, J., Langenfelds, R.L., Francey, R.J., et al., A tracegas climatology above Zotino, central Siberia, Tellus, 2002a, no. 54B, pp. 749–767.Google Scholar
  15. Lloyd, J., Shibistova, O., Zolotoukhine, D., et al., Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest, Tellus, 2002b, no. 54B, pp. 590–610.Google Scholar
  16. NOAA Web, Earth System Research Laboratory. http://www.esrl.noaa.gov/gmd/ccgg/globalview/co2/co2-intro.html.
  17. Ostle, N.J. and Ward, S.E., Climate change and soil biotic carbon cycling, in Soil Ecology and Ecosystem Services, Wall, D.H. et al., Eds., Oxford: Oxford Univ. Press, 2012, pp. 241–256.CrossRefGoogle Scholar
  18. Panov, A.V., Heintzenberg, J., Birmili, W., Otto, R., Chi, X., Zrazhevskaya, G.K., Timokhina, A.V., Verkhovets, S.V., Andrea, M., and Onuchin, A.A., Sources, seasonal variability, and trajectories of atmospheric aerosols over central Siberian forest ecosystems, Dokl. Earth Sci., 2011, vol. 441, no. 2, pp. 1710–1714.CrossRefGoogle Scholar
  19. Popa, M.E., Gloor, M., Manning, A.C., et al., Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland, Atmos. Meas. Tech., 2010, no. 3, pp. 407–427.Google Scholar
  20. Roser, C., Montagnani, L., Schulze, E.-D., et al., Net CO2 exchange rates in three different successional stages of the “dark taiga” of central Siberia, Tellus, 2002, no. 54B, pp. 642–654.Google Scholar
  21. Schulze, E.D., Prokuschkin, A., Arneth, A., et al., Net ecosystem productivity and peat accumulation in a Siberian Aapa mire, Tellus, 2002, no. 54B, pp. 531–536.Google Scholar
  22. Shibistova, O.B., Lloyd, J., Kolle, O., et al., Assessment of CO2 accumulation by a pine stand using eddy covariance method, Dokl. Ross. Akad. Nauk, 2002a, vol. 383, no. 3, pp. 425–429.Google Scholar
  23. Shibistova, O., Lloyd, J., Zrazhevskaya, G., et al., Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest, Tellus, 2002b, no. 54B, pp. 552–567.Google Scholar
  24. Shvidenko, A., Changing world, boreal forest, and IBRFA, Proc. Int. Conf. “Boreal Forests in a Changing World: Challenges and Needs for Action,” Krasnoyarsk: Sukachev Institute of Forest, 2011, pp. 8–12.Google Scholar
  25. Sonnentag, O., van der Kamp, G., Barr, A.G., et al., On the relationship between water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen, Global Change Biol., 2010, no. 16, pp. 1762–1776.Google Scholar
  26. Syed, K., Flanagan, L.B., Carlson, P.J., et al., Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta, Agric. For. Meteorol., 2006, no. 140, pp. 97–114.Google Scholar
  27. Thompson, R.L., Manning, A.C., and Gloor, E., In-site measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany, Atmos. Meas. Tech., 2009, no. 2, pp. 573–591.Google Scholar
  28. Vedrova, E.F. and Vaganov, E.A., Carbon budget of boreal forests in Middle Siberia, Dokl. Earth Sci., 2009, vol. 425, no. 3, pp. 480–484.CrossRefGoogle Scholar
  29. Vinogradova, A.A., Fedorov, I.B., Belikov, I.B., Ginzburg, A.S., Elansky, N.F., and Skorokhod, A.I., Temporal variations in carbon dioxide and methane concentrations under urban conditions, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 5, pp. 599–611.CrossRefGoogle Scholar
  30. WDCGG Web, World Data Centre for Greenhouse Gases. http://ds.data.jma.go.jp/gmd/wdcgg.
  31. Winderlich, J., Setup of a CO 2 and CH 4 Measurement System in Central Siberia and Modeling of Its Results, Technical Report no. 26, Hamburg, 2011.Google Scholar
  32. Yi, C., Davis, K.J., Bakwin, P.S., et al., Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower, J. Geophys. Res., 2000, no. D8 (105), pp. 9991–9999.Google Scholar
  33. Zamolodchikov, D.G., Grabovskii, V.I., and Kraev, N.G., Dynamics of carbon budget in Russian forests over the past two decades, Lesovedenie, 2011, no. 6, pp. 16–28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Timokhina
    • 1
  • A. S. Prokushkin
    • 1
  • A. A. Onuchin
    • 1
  • A. V. Panov
    • 1
  • G. B. Kofman
    • 2
  • M. Heimann
    • 2
  1. 1.Sukachev Institute of Forest, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Max-Planck-Institute for BiogeochemistryJenaGermany

Personalised recommendations