Skip to main content
  • This Number of the Journal is Dedicated to the 70th Anniversary of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
  • Published:

Long-term dynamic of forest vegetation after reduction of copper smelter emissions

Abstract

The state of tree and ground vegetation layers in spruce-fir forests around the Middle Ural Copper Smelter (Revda, Sverdlovsk oblast) has been repeatedly evaluated in 25 permanent sampling plots at 5- to 10-year intervals (1989–2013). The results have been used to characterize the dynamics of plant communities in the period of reduction of emissions from the smelter. Although the annual amount of emissions has decreased from 150–225 × 103 t in the 1980s to less than 5 × 103 t after 2010, the vegetation in the impact zone (1 and 2 km from the smelter) remains severely suppressed: the trees continue to die off, and the diversity of ground vegetation layer is very low. In zones with low and moderate levels of industrial pollution (30 and 4–7 km from the smelter), natural factors associated with windfall disturbance after the 1995 windstorm with snow have played a more important role in the dynamics of forest communities than the reduction of emissions itself.

This is a preview of subscription content, access via your institution.

References

  1. Bates, J.W., Bell, J.N.B., and Massara, A.C., Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 concentrations, Atmos. Environ., 2001, vol. 35, no. 14, pp. 2557–2568.

    CAS  Article  Google Scholar 

  2. Belyaeva, N.V., Disastrous windfall and transformations of herb-dwarf shrub and moss layers in forests of the Visim Reserve, in Posledstviya katastroficheskogo vetrovala dlya lesnykh ekosistem (Consequences of Disastrous Windfall for Forest Ecosystems), Yekaterinburg, 2000, pp. 46–62.

    Google Scholar 

  3. Chernen’kova, T.V. and Bochkarev, Yu.N., Dynamics of spruce stands in the Kola Peninsula under the effect of natural and anthropogenic environmental factors, Zh. Obshch. Biol., 2013, vol. 74, no. 4, pp. 283–303.

    Google Scholar 

  4. Chernen’kova, T.V., Kabirov, R.R., Mekhanikova, E.V., et al., Demutation of vegetation after copper smelter shut-down, Lesovedenie, 2001, no. 6, pp. 31–37.

    Google Scholar 

  5. Chernen’kova, T.V., Kabirov, R.R., and Basova, E.V., Progressive successions in northern taiga spruce forests upon reduction of industrial air pollution, Lesovedenie, 2011, no. 6, pp. 49–66.

    Google Scholar 

  6. Danek, M., The influence of industry on Scots pine stands in the south-eastern part of the Silesia-Krakow Upland (Poland) on the basis of dendrochronological analysis, Water Air Soil Pollut., 2007, vol. 185, nos. 1–4, pp. 265–277.

    CAS  Article  Google Scholar 

  7. Ginocchio, R., Effects of a copper smelter on a grassland community in the Puchuncavi Valley, Chile, Chemosphere, 2000, vol. 41, nos. 1–2, pp. 15–23.

    CAS  PubMed  Article  Google Scholar 

  8. Gunn, J., Keller, W., Negusanti, J., et al., Ecosystem recovery after emission reductions: Sudbury, Canada, Water Air Soil Pollut., 1995, vol. 85, no. 3, pp. 1783–1788.

    CAS  Article  Google Scholar 

  9. Havas, M., Woodfine, D.G., Lutz, P., et al., Biological recovery of two previously acidified, metal contaminated lakes near Sudbury, Ontario, Canada, Water Air Soil Pollut., 1995, vol. 85, no. 2, pp. 791–796.

    CAS  Article  Google Scholar 

  10. Jonard, M., Legout, A., Nicolas, M., et al., Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: A long-term integrated perspective, Global Change Biol., 2012, vol. 18, no. 2, pp. 711–725.

    Article  Google Scholar 

  11. Juknys, R., Vencloviene, J., Stravinskiene, V., et al., Scots pine (Pinus sylvestris L.) growth and condition in a polluted environment: From decline to recovery, Environ. Pollut., 2003, vol. 125, no. 2, pp. 205–212.

    CAS  PubMed  Article  Google Scholar 

  12. Kaigorodova, S.Y. and Vorobeichik, E.L., Changes in certain properties of grey forest soil polluted with emissions from a copper-smelting plant, Russ. J. Ecol., 1996, vol. 27, no. 3, pp. 177–183.

    Google Scholar 

  13. Kalabin, G.V. and Moiseenko, T.I., Ecodynamics of technogenic provinces around mining industries: From degradation to recovery, Dokl. Ross. Akad. Nauk, 2011, vol. 437, no. 3, pp. 398–403.

    Google Scholar 

  14. Keller, W., Heneberry, J.H., and Gunn, J.M., Effects of emission reductions from the Sudbury smelters on the recovery of acid- and metal-damaged lakes, J. Aquat. Ecosyst. Stress Recovery, 1998, vol. 6, no. 3, pp. 189–198.

    CAS  Article  Google Scholar 

  15. Kozlov, M.V., Zvereva, E.L., and Zverev, V.E., Impacts of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Contaminated Areas, Dordrecht: Springer, 2009.

    Book  Google Scholar 

  16. Lyanguzova, I.V. and Maznaya, E.A., Dynamic trends in Vaccinium myrtillus L. cenopopulations in the zone affected by a copper-nickel smelter complex: Results of 20-year monitoring, Russ. J. Ecol., 2012, vol. 43, no. 4, pp. 281–288.

    CAS  Article  Google Scholar 

  17. McBride, M., Sauvé, S., and Hendershot, W., Solubility control of Cu, Zn, Cd and Pb in contaminated soils, Eur. J. Soil Sci., 1997, vol. 48, no. 2, pp. 337–346.

    CAS  Article  Google Scholar 

  18. Meerts, P. and Grommesch, C., Soil seed banks in a heavymetal polluted grassland at Prayon (Belgium), Plant Ecol., 2001, vol. 155, no. 1, pp. 35–45.

    Article  Google Scholar 

  19. Prokaev, V.I., Fiziko-geograficheskoe raionirovanie Sverdlovskoi oblasti (Physiographic Zoning of Sverdlovsk Oblast), Sverdlovsk: Sverdlovsk. Ped. Inst., 1976.

    Google Scholar 

  20. Sibgatullin, R.Z. and Shlykova, N.A., Impact of disastrous windfall in 1995 on primeval forests of the Visim Reserve, in Posledstviya katastroficheskogo vetrovala dlya lesnykh ekosistem (Consequences of Disastrous Windfall for Forest Ecosystems), Yekaterinburg, 2000, pp. 24–31.

    Google Scholar 

  21. Skvortsova, E.B., Ulanova, N.G., and Basevich, V.F., Ekologicheskaya rol’ vetrovalov (Ecological Role of Windfalls), Moscow: Lesnaya Promyshlennost’, 1983.

    Google Scholar 

  22. Sydes, C. and Grime, J.P., Effects of tree leaf litter on herbaceous vegetation in deciduous woodland: 1. Field investigations, J. Ecol., 1981, vol. 69, no. 1, pp. 237–248.

    Article  Google Scholar 

  23. Tarko, A.M., Bakadyrov, A.V., and Kryuchkov, V.V., Modeling the impact of atmospheric pollutants on forest ecosystem in the region, Dokl. Ross. Akad. Nauk, 1995, vol. 341, no. 4, pp. 571–573.

    CAS  Google Scholar 

  24. Trubina, M.R., Species richness and resilience of forest communities: Combined effects of short-term disturbance and long-term pollution, Plant Ecol., 2009, vol. 201, no. 1, pp. 339–350.

    Article  Google Scholar 

  25. Trubina, M.R. and Makhnev, A.K., Dynamics of ground vegetation in forest phytocenoses under conditions of chronic pollution by fluorine, Russ. J. Ecol., 1997, vol. 28, no. 2, pp. 73–77.

    Google Scholar 

  26. Trubina, M.R. and Vorobeichik, E.L., Severe industrial pollution increases the β-diversity of plant communities, Dokl. Biol. Sci., 2012, vol. 442, pp. 17–19.

    CAS  PubMed  Article  Google Scholar 

  27. Trubina, M.R., Vorobeichik, E.L., Khantemirova, E.V., et al., Dynamics of forest vegetation after reduction of industrial emissions: Rapid recovery or continuing degradation?, Dokl. Biol. Sci., 2014 (in press).

    Google Scholar 

  28. Turkov, V.G., On windfall of trees in primeval forest as a biogeocenotic phenomenon: The example of mountain fir-spruce forests in the Middle Urals, in Temnokhvoinye lesa Srednego Urala (Dark Conifer Forests in the Middle Urals), Sverdlovsk, 1979, pp. 121–140.

    Google Scholar 

  29. Tyler, G., Leaching rates of heavy metal ions in forest soil, Water Air Soil Pollut., 1978, vol. 9, no. 2, pp. 137–148.

    CAS  Article  Google Scholar 

  30. Ulanova, N.G., The effects of windthrow on forests at different spatial scales: A review, Forest Ecol. Manag., 2000, vol. 135, nos. 1–3, pp. 155–167.

    Article  Google Scholar 

  31. Usol’tsev, V.A. and Zalesov, S.V., Metody opredeleniya biologicheskoi produktivnosti nasazhdenii (Methods for Determining Biological Productivity of Plantations), Yekaterinburg: UGLTU, 2005.

    Google Scholar 

  32. Uspin, A.A., Meteorological characterization of disastrous windfall in the Middle Urals (June 1995), in Posledstviya katastroficheskogo vetrovala dlya lesnykh ekosistem (Consequences of Disastrous Windfall for Forest Ecosystems), Yekaterinburg, 2000, pp. 18–24.

    Google Scholar 

  33. Vavrova, E., Cudlin, O., Vavricek, D., and Cudlin, P., Ground vegetation dynamics in mountain spruce (Picea abies (L.) Karsten) forests recovering after air pollution stress impact, Plant Ecol., 2009, vol. 205, no. 2, pp. 305–321.

    Article  Google Scholar 

  34. Vidic, T., Jogan, N., Drobne, D., and Vithar, B., Natural revegetation in the vicinity of the former lead smelter in erjav, Slovenia, Environ. Sci. Technol., 2006, vol. 40, no. 13, pp. 4119–4125.

    CAS  Article  Google Scholar 

  35. Von Oheimb, G., Friedel, A., Bertsch, A., and Härdtle, W., The effects of windthrow on plant species richness in a Central European beech forest, Plant Ecol., 2007, vol. 191, no 1, pp. 47–65.

    Article  Google Scholar 

  36. Vorobeichik, E.L., Changes in thickness of forest litter under chemical pollution, Russ. J. Ecol. 1995, vol. 26, no. 4, pp. 252–258.

    Google Scholar 

  37. Vorobeichik. E.L. and Khantemirova, E.V., Reaction of forest phytocenoses to technogenic pollution: Doseeffect dependences, Russ. J. Ecol., 1994, vol. 25, no. 3, pp. 171–180.

    Google Scholar 

  38. Vorobeichik, E.L., Sadykov, O.F., and Farafontov, M.G., Ekologicheskoe normirovanie tekhnogennykh zagryaznenii nazemnykh ekosistem (lokal’nyi uroven’) (Ecological Rating of Technogenic Pollutants in Terrestrial Ecosystems: Local Level), Yekaterinburg: Nauka, 1994.

    Google Scholar 

  39. Weltzin, J.F., Keller, J.K., Bridgham, S.D., et al., Litter controls plant community composition in a northern fen, Oikos, 2005, vol. 110, no. 3, pp. 537–546.

    Article  Google Scholar 

  40. Xiong, S. and Nilsson, C., The effects of plant litter on vegetation: A meta-analysis, J. Ecol., 1999, vol. 87, no. 6, pp. 984–994.

    Article  Google Scholar 

  41. Yusupov, I.A., Luganskii, N.A., and Zalesov, S.V., Sostoyanie iskusstvennykh sosnovykh molodnyakov v usloviyakh aerompromvybrosov (The State of Young Forest Plantations under Industrial Air Pollution), Yekaterinburg: UGLTA, 1999.

    Google Scholar 

  42. Zverev, V.E., Mortality and recruitment of mountain birch (Betula pubescens ssp. czerepanovii) in the impact zone of a copper-nickel smelter in the period of significant reduction of emissions: The results of 15-year monitoring, Russ. J. Ecol., 2009, vol. 40, no. 4, pp. 254–260.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. L. Vorobeichik.

Additional information

Original Russian Text © E.L. Vorobeichik, M.R. Trubina, E.V. Khantemirova, I.E. Bergman, 2014, published in Ekologiya, 2014, No. 6, pp. 448–458.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vorobeichik, E.L., Trubina, M.R., Khantemirova, E.V. et al. Long-term dynamic of forest vegetation after reduction of copper smelter emissions. Russ J Ecol 45, 498–507 (2014). https://doi.org/10.1134/S1067413614060150

Download citation

Keywords

  • industrial pollution
  • air pollution
  • heavy metals
  • copper smelter
  • reduction of emissions
  • forest ecosystems
  • plant communities
  • tree stand
  • ground vegetation
  • biodiversity
  • biomass
  • dynamics of recovery
  • southern taiga
  • the Middle Urals