Russian Journal of Ecology

, Volume 44, Issue 3, pp 239–246 | Cite as

The influence of climate change on the ecology of the Pied Flycatcher (Ficedula hypoleuca) in Southern Karelia



The paper is devoted to the ecology of the Pied Flycatcher in Southern Karelia, where climate warming has had almost no effect on the weather in spring, the season especially important for birds. During the 30-year observation period, the local population has been characterized by variable breeding phenology, high fecundity, and relatively stable abundance. This appears to be related to the broad norm of reaction of this species to the action of external factors, which allows the birds to flexibly respond to changes in the unstable spring weather and adjust the timing and rates of their seasonal activities.


Pied Flycatcher Ficedula hypoleuca climate change breeding population dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahola, M., Laaksonen, T., Sippola, K., et al., Variation in climate warming along the migration route uncouples arrival and breeding dates, Global Change Biol., 2004, vol. 10, pp. 1610–1617.CrossRefGoogle Scholar
  2. Ahola, M., Laaksonen, T., Eeva, T., et al., Selection on laying date is connected to breeding density in the Pied Flycatcher, Oecologia, 2012, vol. 168, pp. 703–710.PubMedCrossRefGoogle Scholar
  3. Artemyev, A.V., Effect of weather on the nesting biology of the Pied Flycatcher, Ficedula hypoleuca (Passeriformes, Muscicapidae), in Karelia, Zool. Zh., 2002, vol. 81, no. 7, pp. 840–849.Google Scholar
  4. Artemyev, A.V., Populyatsionnaya ekologiya mukholovkipestrushki v severnoi zone areala (The Population Ecology of the Pied Flycatcher in the Northern Part of Its Range), Moscow: Nauka, 2008a.Google Scholar
  5. Artemyev, A.V., Factors responsible for long-term population dynamics of the Pied Flycatcher, Ficedula hypoleuca, in taiga forests (Karelia, Russia), Acta Ornithol., 2008b, vol. 43, pp. 1–7.CrossRefGoogle Scholar
  6. Barrett, R.T., The phenology of spring bird migration to North Norway, Bird Study, 2002, vol. 49, pp. 270–277.CrossRefGoogle Scholar
  7. Bailey, N.T.J., Statistical Methods in Biology, New York: Wiley, 1959. Translated under the title Statisticheskie metody v biologii, Moscow: Inostrannaya Literatura, 1962.Google Scholar
  8. Both, C., Flexibility of timing of avian migration to climate change masked by environmental constraints en route, Curr. Biol., 2010, vol. 20, pp. 243–248.PubMedCrossRefGoogle Scholar
  9. Both, C. and te Marvelde, L., Climate change and timing of avian breeding and migration throughout Europe, Climate Res., 2007, vol. 35, pp. 93–105.CrossRefGoogle Scholar
  10. Both, C., Artemyev, A.V., Blaauw, B., et al., Large-scale geographical variation confirms that climate change causes birds to lay earlier, Proc. R. Soc. B: Biol. Sci., 2004, vol. 271, pp. 1657–1662.CrossRefGoogle Scholar
  11. Both, C., Bouwhuis, S., Lessells, C.M., et al., Climate change and population declines in a long-distance migratory bird, Nature, 2006, vol. 441, pp. 81–83.PubMedCrossRefGoogle Scholar
  12. Both, C., van Turnhout, C.A.M., Bijlsma, R.G., et al., Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats, Proc. R. Soc. B: Biol. Sci., 2010, vol. 277, pp. 1259–1266.CrossRefGoogle Scholar
  13. Burger, C., Belskii, E., Eeva, T., et al., Climate change, breeding date and nestling diet: How temperature differentially affects seasonal changes in Pied Flycatcher diet depending on habitat variation, J. Anim. Ecol. 2012. doi 10.1111/j.1365-2656.2012.01968Google Scholar
  14. Coppack, T. and Botch, C., Predicting life-cycle adaptation of migratory birds to global climate change, Ardea, 2002, vol. 90, pp. 369–378.Google Scholar
  15. Eeva, T., Lehikoinen, E., and Pohjalainen, T., Pollutionrelated variation in food supply and breeding success in two hole-nesting passerines, Ecology, 1997, vol. 78, pp. 1120–1131.CrossRefGoogle Scholar
  16. Klimat Karelii: izmenchivost’ i vliyanie na vodnye ob”ekty i vodosbory (The Climate of Karelia: Variation and Effect on Water Bodies and Catchment Areas), Filatov, N.N., Ed., Petrozavodsk: Karel. Nauch. Tsentr Ross. Akad. Nauk, 2004.Google Scholar
  17. Goodenough, A.E., Elliot, S.L., and Hart, A.G., The challenges of conservation for declining migrants: Are reservebased initiatives during the breeding season appropriate for the Pied Flycatcher, Ficedula Hypoleuca?, Ibis, 2009, vol. 151, pp. 429–439.CrossRefGoogle Scholar
  18. Gregory, R.D., Vorisek, P., van Strien, A., et al., Population trends of widespread woodland birds in Europe, Ibis, 2007, vol. 149, no. Suppl. 2, pp. 78–97.CrossRefGoogle Scholar
  19. Gwinner, E., Circannual clocks in avian reproduction and migration, Ibis, 1996, vol. 138, pp. 47–63.Google Scholar
  20. Haartman, von, L., The ortstreue of the Pied Flucatcher, Proc. XII Int. Ognithol. Congress, Helsinki, 1960, vol. 1, pp. 266–273Google Scholar
  21. Heldbjerg, H. and Fox, T., Long-term population declines in Danish trans-Saharan migrant birds, Bird Study, 2008, vol. 55, p. 267–279.CrossRefGoogle Scholar
  22. Hewson, C.M. and Noble, D.G., Population trends of breeding birds in British woodlands over a 32-year period: Relationships with food, habitat use, and migratory behaviour, Ibis, 2009, vol. 151, pp. 464–486.CrossRefGoogle Scholar
  23. Hüppop, O. and Winkel, W., Climate change and timing of spring migration in the long-distance migrant Ficedula hypoleuca in Central Europe: The role of spatially different temperature changes along migration routes, J. Ornithol., 2006, vol. 147, pp. 344–353.CrossRefGoogle Scholar
  24. Jiguet, F., Gregory, R.D., Devictor, V., et al., Population trends of European common birds are correlated with characteristics of their climatic niche, Global Change Biol., 2010, vol. 16, pp. 497–505.CrossRefGoogle Scholar
  25. Jones, T. and Cresswell, W., The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?, J. Anim. Ecol., 2010, vol. 79, pp. 98–108.PubMedCrossRefGoogle Scholar
  26. Jonzén, N., Linden, A., Ergon, T., et al., Rapid advance of spring arrival dates in long-distance migratory birds, Science, 2006, vol. 312, pp. 1959–1961.PubMedCrossRefGoogle Scholar
  27. Laaksonen, T., Ahola, M., Eeva, T., et al., Climate change, migratory connectivity, and changes in laying date and clutch size of the Pied Flycatcher, Oikos, 2006, vol. 114, pp. 277–290.CrossRefGoogle Scholar
  28. Leech, D.I. and Crick, H.Q.P., Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions, Ibis, 2007, vol. 149, Suppl. 2, pp. 128–145.CrossRefGoogle Scholar
  29. Lehikoinen, E., Sparks, T.H., and Zalakevicius, M., Arrival and departure dates, Adv. Ecol. Res., 2004, vol. 35, pp. 1–31.CrossRefGoogle Scholar
  30. Lindström, Å., Green, M. and Ottvall, R., Monitoring Population Changes of Birds in Sweden. Annual Report for 2009, Department of Biology, Lund University, 2010.Google Scholar
  31. Menzel, A., Sparks, T., Estrella, N., et al., European phenological response to climate change matches the warming pattern, Global Change Biol., 2006, vol. 12, pp. 1969–1976.CrossRefGoogle Scholar
  32. Minin, A.A., Fenologiya Russkoi ravniny: materialy i obobshcheniya (The Phenology of the Russian Plain: Materials and Generalizations), Moscow: ABF, 2000.Google Scholar
  33. Møller, A.P., Rubolini, D. and Lehikoinen, E., Populations of migratory bird species that did not show a phenological response to climate change are declining, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 16195–16200.PubMedCrossRefGoogle Scholar
  34. Morrison, C., Robinson, R.A., Clark, J.A., et al., Spatial and temporal variation in population trends in a long-distance migratory bird, Divers. Distrib., 2010, vol. 16, pp. 620–627.CrossRefGoogle Scholar
  35. Newton, I., Population Limitation in Birds, London: Academic, 1998.Google Scholar
  36. Newton, I., The Migration Ecology of Birds, London: Academic, 2008.Google Scholar
  37. Payevsky, V.A., Mechanisms of population dynamics in trans-Saharan migratory birds: A review, Zool. Zh., 2006, vol. 85, no. 3, pp. 368–381.Google Scholar
  38. Robson, D. and Barriocanal, C., Ecological conditions in wintering and passage areas as determinants of timing of spring migration in trans-Saharan migratory birds, J. Anim. Ecol., 2011, vol. 80, pp. 320–331.PubMedCrossRefGoogle Scholar
  39. Romanov, A.A., O klimate Karelii (On the Climate of Karelia), Petrozavodsk: Gosizdat Karel. ASSR, 1961.Google Scholar
  40. Rubolini, D., Møller, A. P., Rainio, K., and Lehikoinen, E., Assessing intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species, Climate Res., 2007, vol. 35, pp. 135–146.CrossRefGoogle Scholar
  41. Saino, N., Rubolini, D., Jonzén, N., et al., Temperature and rainfall anomalies in Africa predict timing of spring migration in trans-Saharan migratory birds, Climate Res., 2007, vol. 35, pp. 123–134.CrossRefGoogle Scholar
  42. Saino, N., Ambrosini, R., Rubolini, D., et al., Climate warming, ecological mismatch at arrival, and population decline in migratory birds, Proc. R. Soc. B: Biol. Sci., 2011, vol. 278, pp. 835–842.CrossRefGoogle Scholar
  43. Sanderson, F.J., Donald, P.F., Pain, D.J., et al., Long-term population declines in Afro-Palearctic migrant birds, Biol. Conserv., 2006, vol. 131, pp. 93–105.CrossRefGoogle Scholar
  44. Sanz, J.J., Large-scale effect of climate change on breeding parameters of Pied Flycatchers in Western Europe, Ecography, 2003, vol. 26, p. 45–50.CrossRefGoogle Scholar
  45. Skorokhodova, S.B., Nature calendar of the Kivach Nature Reserve, Tr. Gos. Prir. Zap. “Kivach,” Petrozavodsk: Petrozav. Gos. Univ., 2006, no. 3, pp. 48–79.Google Scholar
  46. Skorokhodova, S.B., On the climate of the Kivach Nature Reserve, Tr. Gos. Prir. Zap. “Kivach,” Petrozavodsk: Petrozav. Gos. Univ., 2008, no. 4, pp. 3–34.Google Scholar
  47. Sokolov, L.V., Spring ambient temperature as an important factor controlling timing of arrival, breeding, post-fledging dispersal and breeding success of the Pied Flycatcher, Ficedula Hypoleuca, in Eastern Baltic, Avian Ecol. Behav., 2000, vol. 5, pp. 79–104.Google Scholar
  48. Sokolov, L.V., Effect of global climate warming on the timing of passerine bird migration and nesting in the 20th century, Zool. Zh., 2006, vol. 85, no. 3, pp. 317–341.Google Scholar
  49. Sokolov, L.V. and Kosarev, V.V., Relationship between timing of arrival of passerines to the Courish Spit and North Atlantic oscillation index (NAOI) and precipitation in Africa, Proc. Zool. Inst. Russ. Acad. Sci., 2003, vol. 299, pp. 141–154.Google Scholar
  50. Sparks, T.H., Bairlein, F., Bojarinova, J.G., et al., Examining the total arrival distribution of migratory birds, Global Change Biol., 2005, vol. 11, pp. 22–30.CrossRefGoogle Scholar
  51. Stervander, M., Lindström, A., Jonzén, N., et al., Timing of spring migration in birds: long-term trends, North Atlantic oscillation and the significance of different migration routes, J. Avian Biol., 2005, vol. 36, pp. 210–221.CrossRefGoogle Scholar
  52. Thaxter, C.B., Joys, A.C., Gregory, R.D., et al., Hypotheses to explain patterns of population change among breeding bird species in England, Biol. Conserv., 2010, vol. 143, pp. 2006–2019.CrossRefGoogle Scholar
  53. Thingstad, P.G., Nyholm, N.E.I., and Fjeldheim, B., Pied Flycatcher Ficedula hypoleuca population dynamics in peripheral habitats in Scandinavia, Ardea, 2006, vol. 94, pp. 211–223.Google Scholar
  54. Tøttrup, A.P., Rainio, K. Coppack, T., et al., Local temperature fine-tunes the timing of spring migration in birds, Integr. Comp. Biol., 2010, vol. 50, pp. 293–304.PubMedCrossRefGoogle Scholar
  55. Väisänen, R.A., Maalinnuston kannanvaihtelut Eteläja Pohjois-Suomessa 1983–2005, Linnut-Vuosikirja, 2005 (julk. 2006), pp. 83–98Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Biology, Karelian Research CenterRussian Academy of SciencesPetrozavodskRussia

Personalised recommendations