Skip to main content

Methods of landscape ecology in prognostic estimation of the biotic regulation of the carbon cycle under conditions of global climate warming

Abstract

The strategy of prognostic landscape-ecological studies on climatogenic changes in the biological cycle and carbon balance in forest ecosystems as leading factors of the biotic regulation of the environment is presented. Methods are described for constructing analytical and cartographic empirical statistical models that make it possible to reveal the local mechanisms of biotic regulation and identify the zonal/regional types of forest formations capable of stabilizing the continental biosphere in the changing climate.

This is a preview of subscription content, access via your institution.

References

  1. Aber, J., Nelson, R.P., Mcnulty, St., et al., Forest Processes and Global Environmental Change: Predicting the Effects of Individual and Multiple Stressors, BioScience, 2001, vol. 51, no. 9, pp. 735–751.

    Article  Google Scholar 

  2. Ashby, W.R., An introduction to Cybernetics, New York, 1956. Translated under the title Vvedenie v kibernetiku, Moscow: Inostrannaya Literatura, 1959.

  3. Bonan, G.B., Polland, D., and Thompson, S.L., Effect of Boreal Forest Vegetation on Global Climate Warming, Nature, 1992, no. 359, pp. 716–718.

  4. Climate Change 1995. The Science of Climatic Change, Houghton, J.T., Meira Filho, L.G., Callander, B.A., et al., Eds., Cambridge, UK: Cambridge Univ. Press, 1996.

    Google Scholar 

  5. Foley, J.A., Prentice, I.C., Ramancutty, N., et al., An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics, Global Biogeochem. Cycles, 1996, vol. 10, pp. 623–628.

    Article  Google Scholar 

  6. Forman, R.T.T., Land Mosaics: The Ecology of Landscapes and Regions, Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

  7. Freckleton, R.P. and Watkinson, A.R., Large-Scale Spatial Dynamics of Plants: Metapopulations, Regional Ensembles, and Patchy Populations, J. Ecol., 2002, vol. 90, no. 3, pp. 419–434.

    Article  Google Scholar 

  8. Glazovskaya, M.A., Geokhimicheskie osnovy tipologii i metodiki issledovanii prirodnykh landshaftov (Natural Landscapes: Geochemical Foundations of Typology and Methodology of Studies), Moscow: Mosk. Gos. Univ., 1964.

    Google Scholar 

  9. Gorshkov, V.G., Fizicheskie i biologicheskie osnovy ustoichivosti zhizni (Physical and Biological Bases of Life Sustainability), Moscow: VINITI, 1995.

    Google Scholar 

  10. Gorshkov, V.V., Gorshkov, V.G., Danilov-Danil’yan, V.I., et al., Biotic Regulation of the Environment, Ekologiya, 1999, no. 2, pp. 105–113.

  11. Grace, J., Understanding and Managing the Global Carbon Cycle, J. Ecol., 2004, vol. 92, no. 2, pp. 189–202.

    Article  CAS  Google Scholar 

  12. Higgins, S.I. and Cain, M.L., Spatially Realistic Plant Metapopulation Models and the Colonization-Competition Trade-off, J. Ecol., 2002, vol. 90, no. 4, pp. 616–626.

    Article  Google Scholar 

  13. Kobak, K.I., Bioticheskie komponenty uglerodnogo tsikla (Biotic Components of the Carbon Cycle), Leningrad: Gidrometeoizdat, 1988.

    Google Scholar 

  14. Kolomyts, E.G., Lokal’nye mekhanizmy global’nykh izmenenii prirodnykh ekosistem (Local Mechanisms of Global Change in Natural Ecosystems), Moscow: Nauka, 2008.

    Google Scholar 

  15. Krapivin, V.F., Svirezhev, Yu.M., and Tarko, A.M., Matematicheskoe modelirovanie global’nykh biosfernykh protsessov (Mathematical Modeling of Global Biospheric Processes), Moscow: Nauka, 1982.

    Google Scholar 

  16. Krugovorot ugleroda na territorii Rossii (Carbon Cycle on the Russian Territory), Zavarzin, G.A., Ed., Moscow: Min. Nauki i Tekhnologii RF, 1999.

    Google Scholar 

  17. MacMillan, R.A., Torregrosa, A., Moon, D., Coupe, R., and Philips, N., Automated Predictive Mapping of Ecological Entities, in Geomorphometry: Concepts, Software, Applications, Hengl, T. and Reuter, H.I., Eds., Luxembourg: OOPEC, 2007, pp. 457–477.

    Google Scholar 

  18. Melillo, J.M., McGuire, A.D., Kicklighter, D.W., et al., Global Change and Terrestrial Net Primary Production, Nature, 1993, vol. 363, pp. 234–240.

    Article  CAS  Google Scholar 

  19. Modelirovanie dinamiki organicheskogo veshchestva v lesnykh ekosistemakh (Modeling Organic Matter Dynamics in Forest Ecosystems), Kudeyarov, V.N., Ed., Moscow: Nauka, 2007.

    Google Scholar 

  20. Neilson, R.P. and Running, S.W., Global Dynamic Vegetation Modeling: Coupling Biogeochemistry and Biogeography Models, in Global Change and Terrestrial Ecosystems, Cambridge: Cambridge Univ. Press, 1996, pp. 461–465.

    Google Scholar 

  21. Polynov, B.B., Izbrannye trudy (Selected Works), Moscow: Akad. Nauk SSSR, 1956.

    Google Scholar 

  22. Pope, V.D., Gallani, M.L., Rowntree, P.R., and Stratton, R.A., The Impact of New Physical Parametrizations in Hadley Centre Climate Model HadCM3, Climate Dynamics, 2000, vol. 16, pp. 123–146.

    Article  Google Scholar 

  23. Printice, I.C., Cramer, W., Harrison, S.P., et al., A Global Biome Model Based on plant Physiology and Dominance, Soil Properties, and Climate, J. Biogeogr., 1992, vol. 19, pp. 117–134.

    Article  Google Scholar 

  24. Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia), Zavarzin, G.A., Ed., Moscow: Nauka, 2007.

    Google Scholar 

  25. Rozenberg, G.S., Modeli v fitotsenologii (Models in Phytocenology), Moscow: Nauka, 1984.

    Google Scholar 

  26. Rozenberg, G.S. and Kolomyts, E.G., Prognosis of Changes in the Biological Cycle and Carbon Balance of Forest Ecosystems upon Global Warming, Usp. Sovrem. Biol, 2007, vol. 127, no. 6, pp. 531–547.

    Google Scholar 

  27. Schimal, D.S., House, J.L., Hibbard, K.A., et al., Recent Patterns and Mechanisms of Carbon Exchange by Terrestrial Ecosystems, Nature, 2001, vol. 414, no. 8, pp. 169–178.

    Article  Google Scholar 

  28. Sharaya, L.S., Quantitative Analysis of Spatial Variation in Some Parameters of the Zhiguli Ecosystem, Samarskaya Luka. Byull., 2007, vol. 16, no. 4 (22), pp. 639–659.

    Google Scholar 

  29. Shary, P.A., Sharaya, L.S., and Mitusov, A.V., Fundamental Quantitative Methods of Land Surface Analysis, Geoderma, 2002, vol. 107, nos. 1–2, pp. 1–32.

    Article  Google Scholar 

  30. Smith, T.M., Leemance, R., and Shugart, H.H., Sensitivity of Terrestrial Carbon Storage to CO2-Induced Climate Change: Comparison of Four Scenarios Based on General Circulation Models, Climatic Change, 1992, vol. 21, pp. 367–384.

    Article  CAS  Google Scholar 

  31. Sochava, V.B., Geotopology As Part of Geosystem Theory, in Topologicheskie aspekty ucheniya o geosistemakh (Topological Aspectsw of Geosystem Theory), Novosibirsk: Nauka, 1974, pp. 3–86.

    Google Scholar 

  32. Sukachev, V.N., Izbrannye trudy (Selected Works), vol. 1: Osnovy lesnoi tipologii i biogeotsenologii (Foundations of Forest Typology and Biogeocenology), Leningrad: Nauka, 1972.

    Google Scholar 

  33. Tarko, A.M., Antropogennye izmeneniya global’nykh biosfernykh protsessov. Matematicheskoe modelirovanie (Anthropogenic Changes in Global Biosphere Processes: Mathematical Modeling), Moscow: Fizmatlit, 2005.

    Google Scholar 

  34. Timofeeff-Ressovsky, N.V. and Tyuryukanov, A.N., On Elementary Biochorological Divisions of the Biosphere, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1966, no. 1, pp. 123–132.

  35. Tsel’niker, Yu.L., Carbon Dioxide Exchange in Forest Biogeocenoses, in Idei biogeotsenologii v lesovedenii i lesorazvedenii (Biogeocenological Ideas in Forestry and Forest Cultivation), Moscow: Nauka, 2006, pp. 213–229.

    Google Scholar 

  36. Uglerod v ekosistemakh lesov i bolot Rossii (Carbon in Forest and Bog Ecosystems of Russia), Alekseev, V.A. and Birdsey, R.A., Eds., Krasnoyarsk: Inst. Lesa Sib. Otd. Ross. Akad. Nauk, 1994.

    Google Scholar 

  37. Woodward, F.I., Smith, T.M., and Emanuel, W.R., A Global and Primary Productivity and Phytogeography Model, Global Biogeochem. Cycles, 1995, vol. 9, pp. 471–490.

    Article  CAS  Google Scholar 

  38. Zavarzin, G.A., Carbon Balance in Russia, in Vozmozhnosti predotvrashcheniya izmeneniya klimata i ego posledstvii (Prospects for Preventing Climate Change and Its Consequences), Moscow: Nauka, 2007, pp. 134–151.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. G. Kolomyts.

Additional information

Original Russian Text © E.G. Kolomyts, G.S. Rozenberg, L.S. Sharaya, 2009, published in Ekologiya, 2009, No. 6, pp. 403–410.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kolomyts, E.G., Rozenberg, G.S. & Sharaya, L.S. Methods of landscape ecology in prognostic estimation of the biotic regulation of the carbon cycle under conditions of global climate warming. Russ J Ecol 40, 379 (2009). https://doi.org/10.1134/S1067413609060010

Download citation

Key words

  • ecosystem
  • biogeocenosis
  • climatic changes
  • empirical statistical modeling
  • cartogramming
  • ecological prediction