Skip to main content

Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution

Abstract

Spatial variation in the cellulolytic activity of the soil microflora during the growing season (from May to September) has been studied in spruce-fir forests exposed to emissions from the Middle Ural Copper-Smelting Plant. It has been shown that the average rate of decomposition of pure cellulose in polluted areas is significantly reduced, with its spatial variation being markedly increased. The spatial pattern of cellulolytic activity remains stable during the growing season, and the integrated parameters of frequency distributions in zones with different pollution levels change with time in the same direction.

This is a preview of subscription content, access via your institution.

References

  1. Baath, E., Effects of Heavy Metals in Soil on Microbial Processes and Populations (a Review), Water, Air, Soil Pollut., 1989, vol. 47, nos. 3–4, pp. 335–379.

    Article  CAS  Google Scholar 

  2. Berg, B., Ekbohm, G., Soderstrom, B., and Staaf, H., Reduction of Decomposition Rate of Scots Pine Needle Litter Due to Heavy-Metal Pollution, Water, Air, Soil Pollut., 1991, vol. 59, pp. 165–177.

    Article  CAS  Google Scholar 

  3. Berg, M.P., Kniese, J.P., Zoomer, R., and Verhoef, H.A., Long-Term Decomposition of Successive Organic Strata in a Nitrogen-Saturated Scots Pine Forest Soil, Forest Ecol. Manag., 1998, vol. 107, nos. 1–3, pp. 159–172.

    Article  Google Scholar 

  4. Bienkowski, P., Cellulose Decomposition As Bioenergetic Indicator of Soil Degradation, Pol. Ecol. Stud., 1990a, vol. 16, nos. 3–4, pp. 235–244.

    Google Scholar 

  5. Bienkowski, P., The Rate of Cellulose Decomposition in Soils of Spitsbergen Tundra, Pol. Polar Res., 1990b, vol. 11, nos. 1–2, pp. 39–45.

    Google Scholar 

  6. Biology of Plant Litter Decomposition, Dickinson, C.H. and Pugh, G.J.F., Eds., New York, 1974.

  7. Brown, A.H.F. and Howson, G., Changes in Tensile Strength Loss of Cotton Strips with Season and Soil Depth under 4 Tree Species, in Cotton Strip Assay: An Index of Decomposition in Soils, Grange-over-Sands, 1988, pp. 86–89.

  8. Chew, I., Obbard, J.P., and Stanforth, R.R., Microbial Cellulose Decomposition in Soils from a Rifle Range Contaminated with Heavy Metals, Environ. Pollut., 2001, vol. 111, no. 3, pp. 367–375.

    PubMed  Article  CAS  Google Scholar 

  9. Coughtrey, P.J., Jones, C.H., Martin, M.H., and Shales, S.W., Litter Accumulation in Woodlands Contaminated by Pb, Zn, Cd and Cu, Oecologia (Berlin), 1979, vol. 39, pp. 51–60.

    Article  Google Scholar 

  10. Drewnik, M., The Effect of Environmental Conditions on the Decomposition Rate of Cellulose in Mountain Soils, Geoderma, 2006, vol. 132, nos. 1–2, pp. 116–130.

    Article  CAS  Google Scholar 

  11. Ettema, C.H. and Wardle, D.A., Spatial Soil Ecology, Trends Ecol. Evolut., 2002, vol. 17, no. 4, pp. 177–183.

    Article  Google Scholar 

  12. Fischer, Z., Niewinna, M., and Yasulbutaeva, I., Intensity of Organic Matter Decomposition in Various Landscapes of Caucasus (Daghestan), Pol. J. Ecol., 2006, vol. 54, no. 1, pp. 105–116.

    Google Scholar 

  13. Freedman, B. and Hutchinson, T.C., Effects of Smelter Pollutants on Forest Leaf Litter Decomposition Near a Nickel-Copper Smelter at Sudbury, Ontario, Can. J. Bot., 1980, vol. 58, no. 15, pp. 1722–1736.

    CAS  Google Scholar 

  14. French, D.D., Seasonal Pattern in Cotton Strip Decomposition in Soils, in Cotton Strip Assay: An Index of Decomposition in Soils, Grange-over-Sands, 1988, pp. 46–49.

  15. Gadd, G.M., Interactions of Fungi with Toxic Metals, New Phytol., 1993, vol. 124, pp. 25–60.

    Article  CAS  Google Scholar 

  16. Giller, K.E., Witter, E., and McGrath, S.P., Toxicity of Heavy Metals to Microorganisms and Microbial Processes in Agricultural Soils: A Review, Soil Biol. Biochem., 1998, vol. 30, pp. 1389–1414.

    Article  CAS  Google Scholar 

  17. Golley, F.B., An Index to the Rate of Cellulose Decomposition in the Soil, Ecology, 1960, vol. 42, no. 3, pp. 551–552.

    Article  Google Scholar 

  18. Gongal’skii, K.B., Pokarzhevskii, A.D., Savin, F.A., and Filimonova, Zh.V., Spatial Distribution of Animals and Variation in Their Trophic Activity Measured Using Bait-Lamina Test in Sod-Podzolic Soil under Spruce Forest, Ekologiya, 2003, no. 6, pp. 434–444.

  19. Goovaerts, P., Geostatistical Tools for Characterizing the Spatial Variability of Microbiological and Physico-Chemical Soil Properties, Biol. Fert. Soils, 1998, vol. 27, no. 4, pp. 315–334.

    Article  CAS  Google Scholar 

  20. Goovaerts, P., Geostatistics in Soil Science: State-of-the-Art and Perspectives, Geoderma, 1999, vol. 89, nos. 1–2, pp. 1–45.

    Article  Google Scholar 

  21. Gunadi, B., Verhoef, H.A., and Bedaux, J.J.M., Seasonal Dynamics of Decomposition of Coniferous Leaf Litter in a Forest Plantation (Pinus merkusii) in Central Java, Indonesia, Soil Biol. Biochem., 1998, vol. 30, no. 7, pp. 845–852.

    Article  CAS  Google Scholar 

  22. Herlitzius, H., Biological Decomposition Efficiency in Different Woodland Soils, Oecologia (Berlin), 1983, vol. 57, pp. 78–97.

    Article  Google Scholar 

  23. Heuvelink, G.B.M. and Webster, R., Modelling Soil Variation: Past, Present, and Future, Geoderma, 2001, vol. 100, nos. 3–4, pp. 269–301.

    Article  Google Scholar 

  24. Irmler, U., Spatial Heterogeneity of Biotic Activity in the Soil of a Beech Wood and Consequences for the Application of the Bait-Lamina Test, Pedobiologia, 1998, vol. 42, pp. 102–108.

    Google Scholar 

  25. Koide, R.T. and Wu, T., Ectomycorrhizas and Retarded Decomposition in a Pinus resinosa Plantation, New Phytol., 2003, vol. 158, no. 2, pp. 401–407.

    Article  Google Scholar 

  26. Kunito, T., Saeki, K., Oyaizu, H., and Matsumoto, S., Influences of Copper Forms on the Toxicity to Microorganisms in Soils, Ecotoxicol. Environ. Safety, 1999, vol. 44, no. 2, pp. 174–181.

    PubMed  Article  CAS  Google Scholar 

  27. Kurka, A.M., Starr, M., Heikinheimo, M., and Salkinoja-Salonen, M., Decomposition of Cellulose Strips in Relation to Climate, Litterfall Nitrogen, Phosphorus and C/N Ratio in Natural Boreal Forests, Plant Soil, 2000, vol. 219, nos. 1–2, pp. 91–101.

    Article  CAS  Google Scholar 

  28. Marfenina, O.E., Antropogennaya ekologiya pochvennykh gribov (Anthropogenic Ecology of Soil Fungi), Moscow: Meditsina Dlya Vsekh, 2005.

    Google Scholar 

  29. McEnroe, N.A. and Helmisaari, H.S., Decomposition of Coniferous Forest Litter along a Heavy Metal Pollution Gradient, South-West Finland, Environ. Pollut., 2001, vol. 113, no. 1, pp. 11–18.

    PubMed  Article  CAS  Google Scholar 

  30. Strojan, C.L., Forest Leaf Litter Decomposition in the Vicinity of a Zinc Smelter, Oecologia (Berlin), 1978, vol. 32, pp. 203–212.

    Article  Google Scholar 

  31. Swift, M.J., Heal, O.W., and Anderson, J.M., Decomposition in Terrestrial Ecosystem, Oxford: Blackwell, 1979.

    Google Scholar 

  32. Vorobeichik, E.L., Changes in the Spatial Structure of the Destruction Process under Conditions of Atmospheric Pollution of Forest Ecosystems, Izv. Akad. Nauk, Ser. Biol., 2002a, no. 3, pp. 368–379.

  33. Vorobeichik, E.L., Changes in the Spatial Structure of the Destruction Process along Altitudinal and Toxic Gradients: Natural-Technogenic Analogies, Ekologicheskie problemy gornykh territorii: Mat-ly konf. (Proc. Conf. on Ecological Problems in Mountain Areas), Yekaterinburg, 2002b, pp. 224–232.

  34. Vorobeichik, E.L., Response of Forest Litter to Toxic Pollution and Its Connection with Soil Biota, Lesovedenie, 2003, no. 2, pp. 32–42.

  35. Vorobeichik, E.L., Sadykov, O.F., and Farafontov, M.G., Ekologicheskoe normirovanie tekhnogennykh zagryaznenii nazemnykh ekosistem (Ecological Rating of Technogenic Pollutants in Terrestrial Ecosystems), Yekaterinburg: Nauka, 1994.

    Google Scholar 

  36. Witkamp, M. and van der Drift, J., Breakdown of Forest Litter in Relation to Environmental Factors, Plant Soil, 1961, vol. 15, no. 4, pp. 295–311.

    Article  CAS  Google Scholar 

  37. Zvyagintsev, D.G., Bab’eva, I.P., and Zenova, G.M., Biologiya pochv (Soil Biology), Moscow: Mosk. Gos. Univ., 2005.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. L. Vorobeichik.

Additional information

Original Russian Text © E.L. Vorobeichik, 2007, published in Ekologiya, 2007, Vol. 38, No. 6, pp. 427–437.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vorobeichik, E.L. Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution. Russ J Ecol 38, 398–407 (2007). https://doi.org/10.1134/S1067413607060045

Download citation

Key words

  • cellulose decomposition
  • soil microorganisms
  • micromycetes
  • spatial structure
  • dynamics
  • industrial pollution
  • heavy metals
  • forest ecosystems
  • southern taiga
  • the Middle Urals