Skip to main content
Log in

Radionuclides for Betavoltaic Nuclear Batteries: Micro Scale, Energy-Intensive Batteries with Long-Term Service Life

  • Published:
Radiochemistry Aims and scope

Abstract

Product miniaturization of micro-engineering technology with energy consumption at the level of milli- and microwatts requires a corresponding reduction in the characteristic dimensions of personal energy sources and an increase in the duration of their operation, otherwise it will not be possible to ensure the proper autonomy and service life of the promising developments. The most actual problem manifests itself in the field of information technology, medicine, and space activities. According to this need, there is a constant improvement of traditional (chemical, piezoelectric, etc.) sources within significant objective limitations. Significant new prospects are associated with the use of the energy released during radioactive decay as an energy source. The power density reserve (per unit mass) of radionuclides exceeds that of the best chemical sources by hundreds of thousands of times. The known radionuclides, which meet the relevant requirements and can be used to solve the problem of development and mass production of long-term radiation-safe betavoltaic atomic batteries are considered in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Corliss, W.R and Harvey, D.G., Radioisotopic Power Generation, N.J.: Prentice-Hall, 1966.

    Google Scholar 

  2. Olsen, L.G., Trans. Electron Devices, 1969, vol. 2, p. 481.

    Google Scholar 

  3. Kodyukov, V.M., Gusev, V.V., Pochtakov, A.A., and Pustovalov, A.A., Radiatsionnaya tekhnika (Radiation Technology), Moscow: Atomizdat, 1975.

    Google Scholar 

  4. Lazarenko, Yu.V., Pustovalov, A.A., and Shapovalov, V.P., Malogabaritnye yadernye istochniki elektricheskoi energii (Small Nuclear Power Sources), Moscow: Energoatomizdat, 1992.

    Google Scholar 

  5. Baranov, V.Yu., Pal’, A.F., Pustovalov, A.F., Starostin, A.F., Suetin, A.F., Fillipov, M.V., and Fortov, F.V., Radioizotopnye generatory elektricheskogo toka. Izotopy, svoistva, poluchenie, primenenie (Radioisotope Generators of Electric Current. Isotopes, Properties, Production, Application), Baranova, V.Yu., Moscow: Fizmatlit, 2005.

    Google Scholar 

  6. Pustovalov, A.A., Gusev, V.V., Zadde, V.V., Petrenko, N.S., Tikhomirov, A.V., and Tsvetkov, L.A., Atom. Energiya, 2007. T. 103, no. 6, pp. 353–356.

    Google Scholar 

  7. Olsen, L.C., Cabauy, P.A., and Elkind, B.J., Phys. Today, 2012, vol. 65, no. 12, pp. 35–38.

    Article  CAS  Google Scholar 

  8. Reznev, A.A., Pustovalov, A.A., Maksimov, E.M., Perederii, A.N., and Petrenko, N.S., Nano-i Mikrosistemnaya Tekhnika, 2009, no. 3, pp. 14–16.

    Google Scholar 

  9. Chanddrashekhar, M.V., Thomas, C.I., Li, H., Spenser, M.G., and Lal, A., Appl. Phys. Lett., 2006, vol. 88, ID 033506.

    Article  Google Scholar 

  10. Nagornov, Yu.S., Sovremennye aspekty primeneniya β-vol’taicheskogo effekta (Modern Aspects of the Application of the Betavoltaic Effect), Ul’yanovsk: UlGPGU, 2012.

    Google Scholar 

  11. Xiaoyi Li and Jingbin Lu, J. Phys. D: Appl. Phys., 2020, vol. 53, pp. 321–332.

    Google Scholar 

  12. Chunlin Zhou, ECS J. Solid State Sci. Technol., 2021, vol. 10, ID 027005.

    Article  Google Scholar 

  13. Urchuk, S.U., Krasnov, A.A., J. Nano Electron. Phys., 2015, vol. 7, no. 4, pp. 04005-1–04005-4.

    Google Scholar 

  14. Chen Zhao and Lin Lei, Appl. Phys. Lett., 2020, vol. 117, ID 263901.

    Article  Google Scholar 

  15. Alam, T.R., Int. J. Energy Res., 2018, vol. 42, no. 7, pp. 2564–2573.

    Article  CAS  Google Scholar 

  16. Vasil’ev, A.M. and Landsman, A.P., Poluprovodnikovye fotopreobrazovateli (Semiconductor Photoconverters), Moscow: Radio, 1971.

    Google Scholar 

  17. Li, H., Lal, A., and Blanchard, J., J. Appl. Phys., 2002, vol. 92, pp. 271–274.

    Google Scholar 

  18. Kruglov, A.K. and Rudik, A.P., Reaktornoe proizvodstvo radioaktivnykh nuklidov (Reactor Production of Radioactive Nuclides), Moscow: Energoatomizdat, 1985.

    Google Scholar 

  19. Gerasimov, A.S., Zaritskaya, T.S., and Rudik, A.P., Spravochnik po obrazovaniyu nuklidov v yadernykh reaktorakh (Handbook of Nuclides Formation in Nuclear Reactors), Moscow: EAI, 1989.

    Google Scholar 

  20. Tablitsy fizicheskikh velichin: Spravochnik (Tables of Physical Quantities: Handbook), Kikoin, I.K., Eds., Moscow: Atomizdat, 1976.

  21. Zadde, V.V., Pustovalov, A.A., Pustovalov, S.A., Tsvetkov, L.A., and Tsvetkov, S.L., RU Patent 2452060, 10.12.2011.

  22. Mandrugin, A.A. and Baranov, N.N., RU Patent 2608058. 14.07.2015. (Publ. 12.01.2017).

  23. Tsykanov, V.A. and Klinov, V.A., Atom. Energiya, 2002. T. 93, no. 3, pp. 45–48.

    Google Scholar 

  24. Pustovalov, A.A., Tikhomirov, A.V., and Tsvetkov, L.A., RU Patent 2313149. 26.06.2006.

  25. Pustovalov, A.A. and Tsvetkov, L.A., Nano- i Mikrosistemnaya Tekhnika, 2013, no. 10, pp. 19–24.

    Google Scholar 

  26. Gidridy metallov (Metal Hydrides), Myuller, V., Moscow: Atomizdat, 1973.

    Google Scholar 

  27. Ivanova, T.V., Sirotina, R.A., Verbetsky, V.N., J. Alloys Compd., 1997, vol. 253, no. 1–2, pp. 210–211.

    Article  Google Scholar 

  28. Ivanova, T.V. and Verbetsky, V.N., Allerton Press Inc. (United States), 1998, no. 6, pp. 28–31.

    Google Scholar 

  29. Semenenko, K.N., Verbetskii, V.N., and Zolotov, V.S., Zh. Neorg. Khim., 1981, vol. 26, no. 10, pp. 2603–2605.

    CAS  Google Scholar 

  30. Vasut, F., Anisoara, P., and Stefanescu, I., Asian J. Chem., 2010, vol. 22, no. 6, pp. 4291–4294.

    Google Scholar 

  31. Nemirovskaya, E., Alekseev, A.M., and Lunin, V.V., J. Alloys Compd., 1991, vol. 177, no. 1, pp. 1–15.

    Article  CAS  Google Scholar 

  32. Pustovalov, A.A. and Tsvetkov, L.A., Nano- i mikrosistemnaya tekhnika, 2020, vol. 22, no. 1, pp. 34–38.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, grant no. 19-08-00452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Tsvetkov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 3, pp. 281–289, July, 2022 https://doi.org/10.31857/S003383112203011X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkov, L.A., Tsvetkov, S.L., Pustovalov, A.A. et al. Radionuclides for Betavoltaic Nuclear Batteries: Micro Scale, Energy-Intensive Batteries with Long-Term Service Life. Radiochemistry 64, 360–366 (2022). https://doi.org/10.1134/S1066362222030134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222030134

Keywords:

Navigation