Skip to main content

Subsequent Separation of Niobium (Nb), Thorium (Th), Rare Earth Elements (REEs), Zirconium (Zr), and Uranium (U) from Abu Rusheid Cataclastic Concentrate, South Eastern Desert, Egypt

Abstract

ataclastic rocks of Abu Rusheid area, Southeastern Desert of Egypt, were physically upgraded to obtain with producing a concentrate assaying 29.4% ZrO2, 1.55% Nb2O5, 3.13% RE2O3, 0.9% U3O8, and 0.66% ThO2. The corresponding minerals of these elements in the sample studied include zircon, columbite, samarskite, and uranothorite. Cassiterite is considered as an accessory mineral. The novelty of the suggested procedure is based on selective separation of niobium first from the aqueous liquor of the hydrous oxide cake obtained after alkali breakdown of the concentrate, leaving U, Th, Zr, and REEs in the residue. About 97% of niobium was selectively dissolved under the optimum conditions: weight ratio of concentrate sample to NaOH/KOH mixture 1 : 1.5, fusion time 2 h, and fusion temperature 500°C. This was followed by the recovery of Th, Zr, U, and REEs from the residue. The residue was treated with hydrochloric acid to achieve 98% leaching efficiency. From the two adequately obtained leach liquors, significant products have been prepared.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Ibrahim, M.E., Saleh, G.M., Ibrahim, I.H., Azab, M.S., Khamies, A.A., Oraby, F., Abu El-Hassan E.A., and Ragab, A.A., Geologic and ground spectrometric prospecting of the Abu Rusheid–Sikeit shear zones, South Eastern Desert, Egypt, Seventh Arab Conf. on the Peaceful Uses of Atomic Energy, Sanaa, 2004.

  2. El-Afandy, A.H., El-Feky Mohamed, G., Taha, S., El Minyawi, S.M., and Sallam, H.A., Greener J. Geol. Earth Sci., 2016, vol. 4, no. 3, pp. 056–069. https://doi.org/10.15580/GJGES.2016.3.120916213

    Article  Google Scholar 

  3. Mansour, G.R., Geological and geophysical investigations of mineralized structures in Wadi Abalea and its surroundings, Abu Rusheid area, South Eastern Desert, Egypt, PhD Thesis, Mansoura Univ., Egypt, 2005, p. 139

    Google Scholar 

  4. Huang, H., Ding, S., Su, D., Liu, N., Wang, J., and Tan, M., Sep. Purif. Technol., 2014, vol. 138, pp. 65–70. https://doi.org/10.1016/j.seppur.2014.10.008

    CAS  Article  Google Scholar 

  5. Mastren, T., Radchenko, V., Owens, A., Copping, R., Boll, R., Griswold, J.R., Mirzadeh, S., Wyant, L.E., Brugh, M., Engle, J.W., Nortier, F.M., Birnbaum, E.R., John, K.D., and Fassbender, M.E., Sci. Rep., 2017, vol. 7, ID 8216. https://doi.org/10.1038/s41598-017-08506-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Mastren, T., Radchenko, V., Engle, J.W., Weidner, J.W., Owens, A., Wyant, L.E., Copping, R., Brugh, M., Nortier, F.M., Birnbaum, E.R., John, K.D., and Fassbender, M.E., Anal. Chim. Acta, 2018, vol. 998, pp. 75–82. https://doi.org/10.1016/j.aca.2017.10.020

    CAS  Article  PubMed  Google Scholar 

  7. Afifi, S.Y., Saad, M.Z., Yousef, L.A., and Ismail, A.H., Arab J. Nucl. Sci. Appl., 2018, vol. 51, no. 2, pp. 10–19. http://doi.10.21608/AJNSA.2018.6506

    Google Scholar 

  8. Chung, K.W., Yoon, H-S., Kim, C.J., Lee, J.-Y., and Jyothi, R.K., J. Ind. Eng. Chem., 2020, vol. 83, pp. 72–80. https://doi.org/10.1016/j.jiec.2019.11.014

    CAS  Article  Google Scholar 

  9. Kul, M., Topkaya, Y., and Karakaya, I., Hydrometallurgy, 2008, vol. 93, no. 3, p. 129. https://doi.org/10.1016/j.hydromet.2007.11.008

    CAS  Article  Google Scholar 

  10. Hu, C., Liu, H.J., Peng, L., Sun, Y.K., and Long, W., J. Radioanal. Nucl. Chem., 2016, vol. 308, no. 1, p. 251. https://doi.org/10.1007/s10967-015-4306-z

    CAS  Article  Google Scholar 

  11. Chellam, S. and Clifford, D.A., J. Environ. Eng., 2002, vol. 128, no. 10, pp. 942–952. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:10(942)

    CAS  Article  Google Scholar 

  12. Kuruc, J., Strisovska, J., Galanda, D., Dulanska, S., Matel, L., Jerigova, M., and Velic, D., J. Radioanal. Nucl. Chem., 2012, vol. 292, pp. 973–981. https://doi.org/10.1007/s10967-012-1670-9

    CAS  Article  Google Scholar 

  13. Sharma, S. and Balasubramanian, K., RSC Adv., 2015, vol. 5, pp. 31732–31741. https://doi.org/10.1039/C5RA02861B

    CAS  Article  Google Scholar 

  14. Stegnar, P. and Benedik, L., Arch. Oncol., 2001, vol. 9, pp. 251–255. https://inis.iaea.org/collection/NCLCollectionStore/_Public/34/047/34047643.pdf?r=1&r=1

    Google Scholar 

  15. The Health Hazards of Depleted Uranium Munitions, London: Royal Soc., 2001.

  16. Li, P., Zhun, B., Wang, X., Liao, P., Wang, G., Wang, L., Guo, Y., and Zhang, W., Environ. Sci. Technol., 2017, vol. 51, no. 24, pp. 14368–14378. https://doi.org/10.1021/acs.est.7b05288

    CAS  Article  PubMed  Google Scholar 

  17. Yao, L., Min, X., Xu, H., Ke, Y., Liang, Y., and Yang, K., Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 9. https://doi.org/10.3390/ijerph15091863

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yin, S., Wang, L., Kabwe, E., Chen, X., Yan, R., An, K., Zhang, L., and Wu, A., Minerals, 2018, vol. 8, no. 2, p. 32. https://doi.org/10.3390/min8020032

    CAS  Article  Google Scholar 

  19. Quevauviller, Ph., Methodologies for Soil and Sediment Fractionation Studies, Cornwall, UK: Royal Soc. Chem., 2002.

    Google Scholar 

  20. Patra, A.C., Sumesh, C.G., Mohapatra, S., Sahoo, S.K., Tripathi, R.M., and Puranik, V.D., J. Environ. Manag., 2011, vol. 92, pp. 919–925. https://doi.org/10.1016/j.jenvman.2010.10.046

    CAS  Article  Google Scholar 

  21. Zolfonoun, E., Monji, A.M., Taghizadeh, M., and Ahmadi, S.J., Miner. Eng., 2010, vol. 23, no. 9, pp. 755–756. http://doi.org/10.1016/j.mineng.2010.05.005

    CAS  Article  Google Scholar 

  22. Abdel-Rehim, A.M., Int. J. Miner. Process., 2005, vol. 76, pp. 234–243. https://doi.org/10.1016/j.minpro.2005.02.004

    CAS  Article  Google Scholar 

  23. Blumenthal, W.B., Zirconium and zirconium compounds, Kirk–Othmer Encyclopedia of Chemical Technology, Howe-Grant, M., Ed., New York: Wiley, 1998.

    Google Scholar 

  24. Manhique, R., Optimization of Alkali Fusion Process for Zircon Sands: A Kinetic Study of the Process, MSc Thesis, Faculty of Natural and Agricultural Sciences, Univ. of Pretoria, 2003.

  25. Daher., A.M., Isot. Radiat. Res., 2008, vol. 40, no. 1, pp. 91–105.

    Google Scholar 

  26. Kwela, Z.N., Alkali-Fusion Processes for the Recovery of Zirconia and Zirconium Chemicals from Zircon Sand, MSc Thesis, Faculty of Natural and Agricultural Sciences, Univ. of Pretoria, 2000.

  27. Deblonde, G.J.-P., Weigel, V., Bellier, Q., Houdard, R., Delvallée, F., Bélair, S., and Beltrami, D., Sep. Purif. Technol., 2016, vol. 162, pp. 180–187. https://doi.org/10.1016/j.seppur.2016.02.025

    CAS  Article  Google Scholar 

  28. Rodriguez, M.H., Rosales, G.D., Pinna, E.G., and Suarez, D.S., Hydrometallurgy, 2016, vol. 159, pp. 60–64. https://doi.org/10.1016/j.hydromet.2015.10.033

    CAS  Article  Google Scholar 

  29. El-Hussaini, O.M., Miner. Process. Extr. Metall. Rev., 2001, vol. 22, pp. 633–650. https://doi.org/10.1080/08827509808962519

    CAS  Article  Google Scholar 

  30. Rodriguez, M.H., Rosales, G.D., Pinna, E.G., and Suarez, D.S., Hydrometallurgy, 2015, vol. 156, pp. 17–20. https://doi.org/10.1016/j.hydromet.2015.05.006

    CAS  Article  Google Scholar 

  31. Deblonde, G.J.-P., Bengio, D., Beltrami, D., Belair, S., Cote, G., and Chagnes, A., Sep. Purif. Technol., 2019, vol. 215, pp. 634–643. https://doi.org/10.1016/j.seppur.2019.01.052

    CAS  Article  Google Scholar 

  32. Deblonde, G.J.-P., Bengio, D., Beltrami, D., Belair, S., Cote, G., and Chagnes, A., Sep. Purif. Technol., 2019, vol. 226, pp. 209–217. https://doi.org/10.1016/j.seppur.2019.05.087

    CAS  Article  Google Scholar 

  33. Abdel Wahab, G.M., Abdellah, W.M., Yousif, A.M., and Mubark, A.E., Min., Metall. Explor., 2022, vol. 39, pp. 833–846. https://doi.org/10.1007/s42461-019-00136-1

    Article  Google Scholar 

  34. Wang, X., Zheng S., Xu, H., and Zhang, Y., Hydrometallurgy, 2009, vol. 98, pp. 219–223. https://doi.org/10.1016/j.hydromet.2009.05.002

    CAS  Article  Google Scholar 

  35. Purcell, W., Potgieter, H., Nete, M., and Mnculwane, H., Min. Eng., 2018, vol. 119, pp. 57–66. https://doi.org/10.1016/j.mineng.2018.01.031

    CAS  Article  Google Scholar 

  36. Amer, T.E., El-Assay, I.E., Rezk, A.A., El-Kammar, A.A., El-Manawy, A.W., and Abu Khoziem, H.A., Int. J. Min. Process., 2014, vol. 129, pp. 12–21. https://doi.org/10.1016/j.minpro.2014.04.005

    CAS  Article  Google Scholar 

  37. Mubarak, A.E., Chemical Processing of Some Valuable Elements from Gabal El-Faliq Mineralizations, South Eastern Desert, Egypt, PhD Thesis, Faculty of Science, Menoufia Univ., 2019.

  38. Krishnamurthy, N. and Gupta, C.K., Extractive Metallurgy of Rare Earths, CRC, 2004.

    Google Scholar 

  39. Horlait, D., Clavier, N., Szenknect, S., Dacheux, N., and Dubois, V., Inorg. Chem., 2012, vol. 51, pp. 3868–3878. https://doi.org/10.1021/ic300071c

    CAS  Article  PubMed  Google Scholar 

  40. Mathew, K.J., Burger, S., Ogt, S.V., Mason, P.M., and Narayanan, U.I., Uranium assay determination using Davies and Gray titration, Proc. Eighth Int. Conf. on Methods and Applications of Radioanalytical Chemistry (MARC VIII), Kaailua-Kona, Hawaii, 2009.

  41. Marczenko, Z., Spectrophotometric Determination of Elements, Harwood, New York: Wiley, 2000.

    Google Scholar 

  42. Abdelkader, A.M., Daher, A., and El-Kashef, E., J. Alloys Compd., 2007, vol. 460, pp. 577–580. https://doi.org/10.1016/j.jallcom.2007.06.032

    CAS  Article  Google Scholar 

  43. El-Nadi, Y.A., Daoud, J.A., and Aly, H.F., Int. J. Miner. Process., 2005, vol. 76, pp. 101–110. https://doi.org/10.1016/j.minpro.2004.12.005

    CAS  Article  Google Scholar 

  44. Wang, X., Zheng, S., Xu, H., and Zhang, Y., Hydrometallurgy, 2009, vol. 98, pp. 219–223. https://doi.org/10.1016/j.hydromet.2009.05.002

    CAS  Article  Google Scholar 

  45. Sharma, B.K., Nuclear Reaction Chemistry Book, GOEL, 2011, 7th ed., p. 348

    Google Scholar 

  46. Amer, T.E., El-Sheikh, E.M., Gado, M.A., Abu-Khoziem H.A., and Zaki, S.A., Sep. Sci. Technol., 2017, vol. 53, no. 10, pp. 1522–1530. https://doi.org/10.1080/01496395.2017.1405039

    CAS  Article  Google Scholar 

  47. Kobayashi, T., Sasaki, T., Takagi, I., and Moriyama, H., J. Nucl. Sci. Technol., 2009, vol. 46, no. 11, pp. 1085–1090. https://doi.org/10.1080/18811248.2009.9711619

    CAS  Article  Google Scholar 

  48. Crouthamel, C.E. and Martin, D.S.Jr., Ames Laboratory, 1950. http://lib.dr.iastate.edu/ameslab_iscreports/3

  49. Habashi, F., A Textbook of Hydrometallurgy, Quebec, Canada, 1993.

    Google Scholar 

  50. El-Nadi, Y.A. and Daoud, J.A., J. Nucl. Radiochem. Sci., 2004, vol. 5, no. 1, pp. 11–15. https://doi.org/10.14494/jnrs2000.5.11

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Mubark.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Afandy, A.H., Yousif, A.M. & Mubark, A.E. Subsequent Separation of Niobium (Nb), Thorium (Th), Rare Earth Elements (REEs), Zirconium (Zr), and Uranium (U) from Abu Rusheid Cataclastic Concentrate, South Eastern Desert, Egypt. Radiochemistry 64, 257–267 (2022). https://doi.org/10.1134/S1066362222020175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222020175

Keywords:

  • fusion
  • uranium
  • niobium
  • sodium sulfide
  • rare earths
  • thorium
  • zirconium