Skip to main content

Studies for Ultimate Uranium Separation from Its Low-Content Carbonate Leachate Solutions by Ion Flotation

Abstract

The research is aimed at removing uranium from low uranium content solutions using the ion flotation technique. The ion flotation process is an excellent technique for uranium separation from its solutions with low content or trace levels of uranium after optimizing carbonate–bicarbonate concentration for such solutions. It can also be applied to collecting uranium efficiently from all raffinates of the uranium separation or purification projects involving low-grade ore instead of other conventional long tedious methods such as ion exchange or solvent extraction, especially at low U levels. In this study, cetyltrimethylammonium bromide was used as a collector. The factors that can affect the flotation process (uranium concentration, gas flow rate, concentration of collector, and flotation time) were studied, and the best conditions were chosen: uranium concentration 0.02 g/L, carbonate concentration 10 g/L, gas flow rate 52 cm3/min, collector concentration 5 × 10–4 M, ethanol concentration 0.2% v/v, and flotation time 40 min. Under these conditions, the uranium flotation percentage reached more than 99%. A sample representing a sandy carbonaceous rock of Allouga area, southwestern Sinai, was prepared for alkaline leaching of uranium because of the high content of the carbonate which will consume large amounts of acids. The results of the experiments have shown that the optimum Na2CO3/NaHCO3 ratio is 1/1 at a total concentration of 80 g/L and S/L = 1/2, with 4-h agitation at room temperature. Under these conditions, the uranium leaching efficiency reached 94.2%, and the leachability increased to 98.7% at 80°C. The produced carbonate alkaline uranium-bearing leachate was subjected to the flotation process. A simplified sketch for the uranium separation from the carbonate solutions with a cationic collector is presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Tavera, F.J., Escudero, R, Uribe, A., and Finch, J.A., Afinidad, 2000, vol. 490, p. 415.

    Google Scholar 

  2. Sebba, F., Nature, 1959, vol. 184, p. 1062.

    CAS  Article  Google Scholar 

  3. Mizuike, A. and Hiraide, M., Pure Appl. Chem., 1982, vol. 54, p. 1566.

    Article  Google Scholar 

  4. Hoseinian, S., Rezai, B., Safari, M., Deglon, D., and Kowsari, E., J. Environ. Manag., 2019, vol. 244, pp. 408–414.

    CAS  Article  Google Scholar 

  5. Grieves, R.B. and Wilson, T.E., Nature, 1965, vol. 205, p. 1066.

    CAS  Article  Google Scholar 

  6. Deliyanni, E.A., Kyzas, G.Z., and Matis, K.A., J. Mol. Liq., 2017, vol. 225, p. 260.

    CAS  Article  Google Scholar 

  7. Salmani, M.H., Davoodi, M., Ehrampoush, M.H., Ghaneian, M.T., and Fallahzadah, M.H., Iran. J. Environ. Health Sci. Eng., 2013, vol. 10, p. 16.

    Article  Google Scholar 

  8. Chirkst, D.E., Lobacheva, O.L., Berlinskii, I.V., and Sulimova, M.A., Russ. J. Appl. Chem., 2009, vol. 82, no. 8, pp. 1273−1276.

    Google Scholar 

  9. Drakontis, C.E. and Amin, S., Curr. Opin. Colloid Interface Sci., 2020, vol. 48, pp. 77–90.

    CAS  Article  Google Scholar 

  10. Kai Jia, Yuxia Yi, Wuju Ma, Yijun Cao, Guosheng Li, Shiqiang Liu, Taojin Wang, and Nan An, Miner. Eng., 2022, vol. 176, ID 107338.

    Article  Google Scholar 

  11. Alexandrova, L. and Grigorov, L., Int. J. Miner. Process., 1996, vol. 48, pp. 111–125.

    Article  Google Scholar 

  12. Zouboulis, A.I., Matis, K.A., and Stalidis, G.A., Innovations in Flotation Technology, Mavros, P., and Matis, K.A., Eds., Dordrecht: Kluwer, 1992.

    Google Scholar 

  13. Riegel, M., Tokmachev, M., and Hoell, W.H., React. Funct. Polym., 2008, vol. 68, pp. 1072–1080.

    CAS  Article  Google Scholar 

  14. Bhalara, P.D., Punetha, D., and Balasubramanian, K., J. Environ. Chem. Eng., 2014, vol. 2, pp. 1621–1634.

    CAS  Article  Google Scholar 

  15. Zhang, M., Yuan, M., Zhang, M., Wang, M., Chen, J., Li, R., Qiu, L., Fenga, X., Hu, J., and Wu, G., Radiat. Phys. Chem., 2020, vol. 171, ID 108742.

    CAS  Article  Google Scholar 

  16. Tan, K., Li, C., Liu, J., Qu, H., Xia, L., Hu, Y., and Li, Y., Hydrometallurgy, 2014, vol. 150, pp. 99–106.

    CAS  Article  Google Scholar 

  17. Bullwinkel, E.P., US Atomic Energy Commission, RMO, 1954, vol. 2614.

  18. Jacebelli-Turi, C., Barocas, A., and Salvetti, F., Gazz. Chim. Ital., 1963, vol. 93, p. 1493.

    Google Scholar 

  19. Barocas, A., Jacobelli-Turi, C., and Salvetti, F., J. Chromatogr., 1964, vol. 14, p. 291.

    CAS  Article  Google Scholar 

  20. Jacobelli-Turi, C., Barocas, A., and Terenzi, S., Ind. Eng. Chem. Process Des. Develop., 1967, vol. 6, p. 161.

    Article  Google Scholar 

  21. Kunin, R., Ion Exchange Resins, Wiley, 1971, pp. 190–197.

    Google Scholar 

  22. Narayan, K., Village, W., and Pick, R., US Patent, 4092399, 1978.

  23. Lyaudet, G., Mazarin, C., and Vial, J., US Patent, 4256702, 1981.

  24. Riegel, M., Tokmachev, M., and Hoell, W., React. Funct. Polym., 2008, vol. 68, pp. 1072–1080.

    CAS  Article  Google Scholar 

  25. Merritt, R.C., Extractive Metallurgy of Uranium, Merritt, R C., Ed.; Colorado School of Mines Research Inst., 1971.

    Google Scholar 

  26. Clark, D.L., Hobart, D.E., and Neu, M.P., Chem. Rev., 1995, vol. 95, p. 25.

    CAS  Article  Google Scholar 

  27. Gupta, C.K. and Singh, H., Uranium Resource Processing: Secondary Resources, Mumbai, India: Bhabha Atomic Research Centre, 2001.

    Google Scholar 

  28. Forward, F.A. and Halpern, J., J. Met., 1954, vol. 6, p. 1408.

    Google Scholar 

  29. Shapiro, L. and Brannock, N.W., Rapid Analysis of Silicate, Carbonate and Phosphate Rocks, US Geological Survey Bulletin, 1962, no. 1144A.

  30. Mathew, K.J., Bürger, S., Ogt, S.V., Mason, P.M.E.M., and Narayanan, U.I., in Eighth Int. Conf. on Methods and Applications of Radioanalytical Chemistry (Marc VIII), Kailua-Kona, Hawaii, 2009, vol. 5.

  31. Yang Hu, Chunguang Li, Jiang Liu, Huiqiong Qu, Liangshu Xia, and Yongmei Li, Hydrometallurgy, 2014, vol. 150, pp. 99–106.

    Article  Google Scholar 

  32. Mahmoud, M.R. and Othman, S.H., Radiochim. Acta, 2018, vol. 106, no. 6, pp. 465–476.

    CAS  Article  Google Scholar 

  33. Corrin, M.L. and Harkins, W.D., J. Am. Chem. Soc., 1947, vol. 69, p. 683.

    CAS  Article  Google Scholar 

  34. Ralston, A. and Hoerr, C.W., J. Am. Chem. Soc., 1946, vol. 68, p. 2460.

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Prof. Dr. Kamal Abd Elbaki Ali Rabee, Nuclear Materials Authority (NMA), for his continuous and constructive assistance and for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abd El Dayem.

Ethics declarations

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dayem, S.M.A.E. Studies for Ultimate Uranium Separation from Its Low-Content Carbonate Leachate Solutions by Ion Flotation. Radiochemistry 64, 193–202 (2022). https://doi.org/10.1134/S1066362222020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222020116

Keywords:

  • uranium
  • carbonate solutions
  • ion flotation