Skip to main content

Sorption Kinetics of 60Co with Termoxid 35 Composite Sorbent in the Presence of Humic Acids

Abstract

The sorption kinetics of microamounts of Co(II) ions by the Termoxid 35 sorbent in a constant ionic strength chloride–acetate solution with and without the presence of natural humic acids (HAs) was studied using the finite volume method with sorbate recirculation. Detailed data on the real-time sorption of the 60Co radionuclide by the sorbent were obtained based on the rate of solution passing through the sorbent, pH, temperature, and HA concentration. The mixed-diffusion model of the Co(II) sorption kinetics, which includes successive stages of film and gel diffusion in the macro-micropores of the sorbent grain, the most statistically accurately and adequately simulates the data obtained. The coefficients of film (β, m/s) and gel (Dg, m2/s) diffusion do not depend on solution pH and HA concentration. The average value of Dg is (6.0 ± 4.5) × 10–10 m2/s, the activation energy of gel diffusion is 20.7 ± 10.0 kJ/mol at pH 7.5. The found values ​​are close to the Co2+ self-diffusion parameters in ultradilute aqueous solutions. A conclusion was made about the possibility of efficient sorption of Co(II) from natural aqueous solutions by the Termoxid 35 sorbent in the presence of humic acids.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Nikolaev, A.N., Cand. Sci. (Chem.) Dissertation, Moscow: MosNPO Radon, 2011.

  2. Remez, V.P., Ioshin, A.A., Tashlykov, O.L., and Shcheklein , S.E., Abstracts of Papers, Molodezhnyi nauchnyi seminar “Reaktory na bystrykh neitronakh i sootvetstvuyushchie toplivnye tsikly” (Youth Scientific Seminar “Fast Reactors and Corresponding Fuel Cycles”), Ekaterinburg: UrFU, 2017.

  3. Lokshin, E.P., Ivanenko, V.I., and Korneikov, R.I., Atom. Energiya, 2011, vol. 110, no. 5, pp. 285.

    Google Scholar 

  4. Kulyukhin, S.A., Konovalova, R.A., Gorbacheva, M.P., Rumer, I.A., Krasavina, E.P., and Mizina, L.V., Patent RU 2497213. 2013.

  5. Muratov, O.E., Stepanov, I.K., and Tsareva, S.M., Ekologiya prom. Proizvodstva, 2012, vol. 3, p. 30.

    Google Scholar 

  6. Polyakov, E.V., Reaktsii ionno-kolloidnykh form mikrokomponentov i radionuklidov v vodnykh rastvorakh (Reactions of Ionic-Colloidal Forms of Microcomponents and Radionuclides in Aqueous Solutions), Ekaterinburg: IKhTT UrO RAN, 2003.

    Google Scholar 

  7. Volkov, I.V. and Polyakov, E.V., Radiochemistry, 2020, vol. 62, p. 141. https://doi.org/10.1134/S1066362220020010

    CAS  Article  Google Scholar 

  8. Zong, P., Guo, Zh., He, Ch., Zhao, Y., Liu, Sh., Wang, H., and Pan, H., J. Radioanal. Nucl. Chem., 2012, vol. 293, p. 289.

    CAS  Article  Google Scholar 

  9. Sharygin, L.M., Termostoikie neorganicheskie sorbenty (Heat-Resistant Inorganic Sorbents), Ekaterinburg: IKhTT UrO RAN, 2012.

    Google Scholar 

  10. http://termoksid.rf/catalog/dezaktivaciya-tehnologicheskih-vod-aes-i-drugih-predpriyatii-atomnoi-otrasli/. Cited April 24, 2020.

  11. Pletnev, R.N., Zolotukhina, L.V., and Gubanov, V.A., YaMR v soedineniyakh peremennogo sostava (NMR in Compounds of Variable Composition), Moscow: Nauka, 1983.

    Google Scholar 

  12. Eibl, M., Virtanen, S., Pischel, F., Bok, F., Lönnrot, S., Shawd, S., and Huittinen, N., Appl. Surf. Sci., 2019, vol. 487, p. 1316.

    CAS  Article  Google Scholar 

  13. Polyakov, E.V., Denisov, E.I., and Volkov, I.V., Radiochemistry, 2021, vol. 63, no. 6, pp. 545–552. https://doi.org/10.1134/S1066362221060096

    Article  Google Scholar 

  14. Voronina, A.V. and Nogovitsyna, E.V., Radiochemistry, 2015, vol. 57, no. 1, p. 79. https://doi.org/10.1134/S1066362215010129

    CAS  Article  Google Scholar 

  15. Nogovitsina, E.V., Cand. Sci. (Chem.) Dissertation, Ekaterinubrg: UrFU, 2011.

  16. Korshunov, I.A., Chernorukov, N.G., and Prokof’eva, T.V., Radiokhimiya, 1976, vol. 18, no. 1, p. 5.

    CAS  Google Scholar 

  17. Golovin, Yu.I., Kuznetsov, D.G., Vasyukov, V.M., Shuklinov, A.V., Korenkov, V.V., Grigor’ev, I.P., and Stolyarov, A.A., Vestn. TGU, 2013, vol. 18, no. 6, p. 3150.

    Google Scholar 

  18. Yiacoumi, S. and Tien, C., Kinetics of Metal Ion Adsorption from Aqueous Solutions: Models, Algorithms, and Applications, New York: Springer, 1995.

    Book  Google Scholar 

  19. De Boodt, M.F., Hayes, M.H.B., and McBride, M.B., Interactions at the Soil Colloid–Soil Solution Interface, Belt, G.H., Ed., Belgium: Springer, 1986.

    Google Scholar 

  20. Denisov, E.I. and Betenekov, N.D., Radiochemistry, 2018, vol. 60, no. 1, p. 27. https://doi.org/10.1134/S1066362218010058

    Article  Google Scholar 

  21. Denisov, E.I. and Betenekov, N.D., Radiochemistry, 2016, vol. 58, no. 6, p. 631. https://doi.org/10.1134/S1066362216060102

    CAS  Article  Google Scholar 

  22. Kokotov, Yu.A. and Pasechnik, V.A., Ravnovesie i kinetika ionnogo obmena (Equilibrium and Kinetics of Ion Exchange), Leningrad: Khimiya, 1970.

    Google Scholar 

  23. Rouquerol, J., Rouquerol, F., Sing, K.S.W., Maurin, G., Rouquerol, J., and Llewellyn, F.P., Adsorption at the Liquid–Solid Interface: Thermodynamics and Methodology; Adsorption by Powders and Porous Solids. Principles, Methodology and Applications, Marseille, France: Elsevier, 2012.

    Google Scholar 

  24. Polyakov, E.V. and Nistel’, I.G., Radiokhimiya, 1985, vol. 27, no. 5, p. 604.

    Google Scholar 

  25. Ali, M.M.S., Sami, M., and El Sayed, A.A., J. Radioanal. Nucl. Chem., 2020, vol. 324, p. 189.

    CAS  Article  Google Scholar 

  26. Pechenyuk, S.I., Vestn. YuurGU, Ser.: Khimiya, 2013, vol. .5, no. 2, p. 26.

    Google Scholar 

  27. Kotrly, S. and Sucha, L., Handbook of Chemical Equilibria in Analytical Chemistry, Chichester, England: Wiley, 1985.

    Google Scholar 

  28. Migdisov, A.A., Zizin, D., and Williamson-Jones, A.E., Geochim. Cosmochim. Acta, 2011, vol. 75, no. 14, p. 4065.

    CAS  Article  Google Scholar 

  29. Basolo, F. and Pearson, R.G., Mechanisms of Inorganic Reactions, New York: Wiley, 1960.

    Google Scholar 

  30. Lykov, A.V., Theory of thermal conductivity (Theory of Thermal Conductivity), Moscow: Vyssh. Shkola, 1967.

    Google Scholar 

  31. Aksel’rud, G.A., Zh. Phiz. Khim., 1959, vol. 33, no. 10, p. 2317.

    Google Scholar 

  32. Patil, S.F., Rajurkar, N.S., and Borhade, A.V., J. Radioanal. Nucl. Chem., 1990, vol. 140, no. 1, p. 31.

    CAS  Article  Google Scholar 

  33. Patil, S.F. and Patil, P.R.S., J. Radioanal. Nucl. Chem., 2000, vol. 245, no. 3, p. 645.

    CAS  Article  Google Scholar 

  34. Grossbach, R., Austauschadsorption in Theorie und Praxis, Berlin: Akademie, 1957.

    Google Scholar 

  35. Bobkova, L.A., Zharkova, V.V., and Kozik, V.V., Izv. Tomsk. Politekhn. Univ., Khimiya, 2014, vol. 324, no. 3, p. 74.

    Google Scholar 

  36. Kuz’minykh, V.A. and Meleshko, V.P., Zh. Phiz. Khim., 1980, vol. 54, no. 8, p. 2063.

    Google Scholar 

  37. Kuz’minykh, V.A., Cand. Sci. (Chem.) Dissertation, Voronezh: VGU, 1999.

Download references

Funding

The work was carried out according to the plans of fundamental research of the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences State theme АААА-А19-119031890028-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Polyakov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polyakov, E.V., Denisov, E.I. & Volkov, I.V. Sorption Kinetics of 60Co with Termoxid 35 Composite Sorbent in the Presence of Humic Acids. Radiochemistry 64, 183–192 (2022). https://doi.org/10.1134/S1066362222020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222020102

Keywords:

  • cobalt-60
  • sorption
  • Termoxid 35
  • humic acids