Skip to main content

Influence of the Structure of Biscarbamoylmethylphosphine Oxides on the Extraction of REE(III), U(VI), and Th(IV) from Nitric Acid Solutions in the Presence of an Ionic Liquid

Abstract

It was established that the extraction ability of bis[(diphenylphosphinyl)acetamido]alkanes, in the molecules of which two bidentate fragments Ph2P(O)CH2C(O)NAlk– are linked via an amide nitrogen atom by an alkylene bridge, with respect to REE(III), U(VI ) and Th(IV) in nitric acid media increases significantly in the presence of 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquid in the organic phase and significantly exceeds that of diaryl(dialkylcarbamoylmethyl)phosphine oxides. The stoichiometry of extractable REE(III) complexes was determined by the equilibrium shift method. The influence of the structure of the extractant and the concentration of HNO3 in the aqueous phase on the efficiency of the transition of REE(III), U(VI), and Th(IV) ions into an organic phase containing an ionic liquid is considered.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Myasoedov, B.F. and Kalmykov, S.N., Mendeleev Commun., 2015, vol. 25, no. 5, p. 319. https://doi.org/10.10016/j.mencom.2015.09.001

    CAS  Article  Google Scholar 

  2. Horwitz, E.P., Martin, K.A., Diamond, H., and Kaplan, L., Solvent Extr. Ion Exch., 1986, vol. 4, no. 3, p. 449. https://doi.org/10.1080/07366298608917877

    CAS  Article  Google Scholar 

  3. Chmutova, M.K., Litvina, M.N., Pribylova, G.A., Ivanova, L.A., Smirnov, I.V., Shadrin, A.Yu, and Myasoedov, B.F., Radiokhimiya, 1999, vol. 41, no. 4, p. 331.

    Google Scholar 

  4. Alyapyshev, M.Yu., Babain, V.A., and Ustynyuk, Yu.A., Russ. Chem. Rev., 2016, vol. 85, no. 9, p. 943. https://doi.org/10.1070/RCR4588

    CAS  Article  Google Scholar 

  5. Leoncini, A., Huskens, J., and Verboom, W., Chem. Soc. Rev., 2017, vol. 46, p. 7229. https://doi.org/10.1039/C7CS00574A

    CAS  Article  PubMed  Google Scholar 

  6. Wilson, A.M., Bailey, P.J., and Tasker, P.A., Chem. Soc. Rev., 2014, vol. 43, p. 123. https://doi.org/10.1039/C3CS60275C

    CAS  Article  PubMed  Google Scholar 

  7. Bhattacharyya, A. and Mohapatra, P.K., Radiochim. Acta, 2019, vol. 107, p. 931

    CAS  Article  Google Scholar 

  8. Arnand-New, F., Bohmer, V., Dozol, J.F., Gruttner, C., Jakobi, R.A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill M.-J., Simon, N., and Vogt, W., J. Chem. Soc. Perkin Trans. 2, 1996, p. 1175. https://doi.org/10.1039/P29960001175

    Article  Google Scholar 

  9. Kochetkova, N.E., Koiro, O.E., Nesterova, N.P., Medved’, T.Ya., Chmutova, M.K., Myasoedov, B.F., and Kabachnik, M.I., Radiokhimiya, 1986, vol. 28, no. 3, p. 338

    CAS  Google Scholar 

  10. Turanov, A.N., Karandashev, V.K., and Yarkevich, A.N., Radiochemistry, 2012, vol. 54, no. 5, p. 439; Turanov,, A.N., Karandashev, V.K., and Yarkevich,, A.N., Radiochemistry, 2012, vol. 54, no. 5, p. 477. https://doi.org/10.1134/S106636221205010

    Article  Google Scholar 

  11. Turanov, A.N., Karandashev, V.K., Sharova, E.V., Artyushin, O.I., and Odinets, I.L., Solvent Extr. Ion Exch., 2010, vol. 28, no. 5, p. 579. https://doi.org/10.1080/07366299.2010.499297

    CAS  Article  Google Scholar 

  12. Turanov, A.N., Karandashev, V.K., and Yarkevich, A.N., Radiochemistry, 2021, vol. 63, no. 4, pp. 364–371.

    Article  Google Scholar 

  13. Riano, S., Foltova, S.S., and Binnemans, K., RSC Adv., 2020, vol. 10, p. 307.

    CAS  Article  Google Scholar 

  14. Raut, D.R., Sharma, S., Ghosh, S.K., and Mohapatra, P.K., Sep. Sci. Technol., 2017, vol. 52, p. 1430.

    CAS  Article  Google Scholar 

  15. Khodakarami, M. and Alagha, L., Sep. Purif. Technol., 2020, vol. 232, ID 115952.

    CAS  Article  Google Scholar 

  16. Murakami, S., Matsumiya, M., Yamada, T., and Tsunashima, K., Solvent Extr. Ion Exch., 2016, vol. 34, p. 172.

    CAS  Article  Google Scholar 

  17. Kolarik, Z., Solvent Extr. Ion Exch., 2013, vol. 31, p. 24. https://doi.org/10.1080/07366299.2012.700589

    CAS  Article  Google Scholar 

  18. Iqbal, M., Waheed, K., Rahat, S.B., Mehmood, T., and Lee, M.S., J. Radioanal. Nucl. Chem., 2020, vol. 325, p. 1.

    CAS  Article  Google Scholar 

  19. Nakashima, K., Kubota, F., Maruyama, T., Goto, M., Anal. Sci., 2003, vol. 19, p. 1097. https://doi.org/10.2116/analsci.19.1097

    CAS  Article  PubMed  Google Scholar 

  20. Turanov, A.N., Karandashev, V.K., and Yarkevich, A.N., Radiochemistry, 2013, vol. 55, no. 4, p. 314; Turanov, A.N., Karandashev, V.K., Yarkevich, A.N., Radiochemistry, 2013, vol. 55, no. 4, p. 382. https://doi.org/10.1134/S106636221304007

    Article  Google Scholar 

  21. Pribylova, G.A., Smirnov, I.V., and Novikov, A.P., Radiochemistry, 2012, vol. 54, no. 5, p. 435.

    Article  Google Scholar 

  22. Pribilova, G., Smirnov, I., and Novikov, A., J. Radioanal. Nucl. Chem., 2012, vol. 295, p. 83.

    Article  Google Scholar 

  23. Turanov, A.N., Karandashev, V.K., and Baulin, V.E., Solvent Extr. Ion Exch., 2012, vol. 30, no. 3, p. 244. https://doi.org/10.1080/07366299.2011.639248

    CAS  Article  Google Scholar 

  24. Yarkevich, A.N., Brel, V.K., Makhaeva, G.F., Serebryakova, O.G., Boltneva, N.P., Kovaleva, N.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 7, p. 1644. https://doi.org/10.1134/S1070363215070129

    CAS  Article  Google Scholar 

  25. Turanov, A.N., Karandashev, V.K., Kharitonov, A.N., Lezhnev, A.N., Safronova, Z.V., Yarkevich, A.N., and Tsvetkov, E.N., Russ. J. Gen. Chem., 1999, vol. 69, no. 7, p. 1068.

    CAS  Google Scholar 

  26. Naganawa, H., Suzuki, H., Tachimori, S., Nasu, A., and Sekine , T., Phys. Chem. Chem. Phys., 2001, vol. 3, p. 2509.

    CAS  Article  Google Scholar 

  27. Turanov, A.N., Karandashev, V.K., and Yarkevich, A.N., Radiochemistry, 2018, vol. 60, no. 2, p. 153; Turanov,, A.N., Karandashev,, V.K., and Yarkevich,, A.N., Radiochemistry, 2018, vol. 60, no. 2, p. 170–176. https://doi.org/10.1134/S106636221802007

    Article  Google Scholar 

  28. Rais, J. and Tachimori, S., J. Radioanal. Nucl. Chem. Lett., 1994, vol. 188, no. 2, p. 157.

    CAS  Article  Google Scholar 

  29. Gaillard, C., Boltoeva, M., Billard, I., Georg, S., Mazan, V., Ouadi, A., Ternova, D., and Henning, C., ChemPhysChem., 2015, vol. 16, p. 2653. https://doi.org/10.1002/cphc.201500283

    CAS  Article  PubMed  Google Scholar 

  30. Binnemans, K., Chem. Rev., 2007, vol. 107, p. 2593. https://doi.org/10.1021/cr050979c

    CAS  Article  Google Scholar 

  31. Turanov, A.N., Karandashev, V.K., Sharova, E.V., Genkina, G.K., Artyushin, O.I., and Baimukhanova, A., Radiochim. Acta, 2018, vol. 106, p. 355.

    CAS  Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment 2020 of the Institute of Solid State Physics of Russian Acacdemy of Sciences, IPTM RAS, and IPAS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Turanov.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turanov, A.N., Karandashev, V.K. & Yarkevich, A.N. Influence of the Structure of Biscarbamoylmethylphosphine Oxides on the Extraction of REE(III), U(VI), and Th(IV) from Nitric Acid Solutions in the Presence of an Ionic Liquid. Radiochemistry 64, 164–170 (2022). https://doi.org/10.1134/S1066362222020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222020072

Keywords:

  • extraction
  • REE(III)
  • uranium(VI)
  • thorium(IV)
  • nitric acid
  • carbamoylmethylphosphine oxides
  • ionic liquids