Skip to main content

Cast Stone Matrices Based on Basaltic Melt with Uranium-Bearing Silica Gel


The distribution of uranium between different phases of cast stone matrices fabricated by fusion of basalt and uranium-bearing SiO2-based collectors was investigated. It was found that matrices created by fusion of basalt with SiO2 consist of glass, quartz, and spinel as the main phases. A study of the physicochemical properties of collectors based on 30 wt % UO2(NO3)2-bearing SiO2 showed that, after thermal treatment at a temperature of 973 K, they contain uranium only in the form of UO3. The uranium leaching in H2O from SiO2 after its thermal treatment, as well as from a basaltic melt with SiO2, was estimated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. Poluektov, P.P., Sukhanov, L.P., and Matyunin, Yu.I., Ross. Khim. Zh., 2005, vol. 49, no. 4, p. 29.

    CAS  Google Scholar 

  2. Blokhin, P.A., Dorofeev, A.N., Linge, I.I., Merkulov, I.A., Seelev, I.N., Tikhomirov, D.V., Utkin, S.S., and Khaperskaya, A.V., Radioaktivnye Otkhody, 2019, no. 2(7), p. 49.

    Google Scholar 

  3. Stefanovsky, S.V., Stefanovsky, O.I., Prusakov, I.L., Kadyko, M.I., Averin, A.A., Nikonov, B.S., J. Non-Cryst. Solids, 2019, vol. 512, p. 81.

    CAS  Article  Google Scholar 

  4. Jae-Young Pyo, Cheong Won Lee, Hwan-Seo Park, Jae Hwan Yang, Wooyong Um, and Jong Heo, J. Nucl. Mater., 2017, vol. 493, p. 1.

    Article  Google Scholar 

  5. Materials for Nuclear Waste Immobilization, Ojovan, M.I. and Hyatt, N.C., Eds., Basel: MDPI, 2019.

    Google Scholar 

  6. Merkushkin, A.O., Cand, Sci. (Chem.), Moscow, 2003.

  7. Stefanovskii, S.V. and Yudintsev, S.V., Russ. Chem. Rev., 2016, vol. 85, no. 9, p. 962.

    CAS  Article  Google Scholar 

  8. Yudintsev, S., Stefanovsky, S., Nikonov, B., Stefanovsky, O., Nickolskii, M., and Skvortsov, M., J. Nucl. Mater., 2019, vol. 517, p. 371.

    CAS  Article  Google Scholar 

  9. Malinina, G.A., Cand, Sci. (Chem.), Moscow: Radon, 2016.

  10. Ershov, B.G., Minaev, A.A., Popov, I.B., Yurik, T.K., Kuznetsov, D.G., Ivanov, V.V., Rovnyi, S.I., and Guzhavin, V.I., Vopr. Radiats. Bezopasnosti, 2005, no. 1, p. 13.

    Google Scholar 

  11. Saidl, Ya. and Ralkova, Ya., Atom. Energiya, 1966, vol. 10, p. 285.

    Google Scholar 

  12. Lebeau, M.-J. and Girod, M., Am. Ceram. Soc. Bull., 1987, vol. 66, p. 1640.

    CAS  Google Scholar 

  13. Welch, J.M., Schuman, R.P., Sill, C.W., Kelsey, P.V.Jr., Henslee, S.P., Tallman, R.L., Horton, R.M., Owen, D.E., and Flinn, J.E., MRS Online Proc. Library Archive, 1981, vol. 6: Symp. D—Scientific Basis for Nuclear Waste Management IV, p. 23–30.

  14. Kuznetsov, D.G., Ivanov, V.V., Popov, I.B., and Ershov, B.G., Radiochemistry, 2009, vol. 51, p. 63.

    CAS  Article  Google Scholar 

  15. Matyunin, Yu.I., Alexeev, O.A., and Ananina, T.N., Abstracts of Papers, GLOBAL 2001 Int. Conf. on Back End of the Fuel Cycle: From Research to Solutions, Paris, 2001.

  16. Popov, I.B., Ivanov, V.V., Kuznetsov, D.G., Ershov, B.G., Radiochemistry, 2010, vol. 52, no. 5, p. 537.

    CAS  Article  Google Scholar 

  17. Kuznetsov, D.G., Ivanov, V.V., Popov, I.B., and Ershov, B.G., Radiochemistry, 2012, vol. 54, no. 2, p. 193.

    CAS  Article  Google Scholar 

  18. Martynov, K.V., Kulemin, V.V., Gorbacheva, M.P., and Kulyukhin, S.A., Ann. Nucl. Energy, 2021, vol. 163, ID 108555.

    Article  Google Scholar 

  19. Dzekun, E.G., Korchenkin, K.K., Mashkin, A.N., Kolupaev, D.N., Nardova, A.K., Parfanovich, B.N., and Filippov, E.A., Abstracts of Papers, Proc. Int. Conf. on Decommissioning and Decontamination and on Nuclear and Hazardous Waste Management (Spectrum’98), Denver, USA, Sept. 13–18, 1998, vol. 1, p. 732.

  20. Egorov, N.N., Nardova, A.K., Filippov, E.A., Starchenko, V.A., Abstracts of Papers, Proc. Int. Conf. “Waste Management 1999” (WM’99), Tucson, USA, Feb. 28–March 4, 1999, p. 43.

  21. Korchenkin, K.K., Mashkin, A.N., Dzekun, E.G., Parfanovich, B.N., Filippov, E.A., Ispol’zovanie silikagelya dlya promezhutochnogo khraneniya dolgozhivushchikh radionuklidov (Use of Silica Gel for Intermediate Storage of Long-Lived Radionuclides).

  22. Praveena, N., Jena, Hr., Bera, S., Kumar, R., Jha, S.N., and Bhattacharyya, D., Prog. Nucl. Energy, 2021, vol. 131, ID 103579.

    CAS  Article  Google Scholar 

  23. JCPDS—Int. Centre for Diffraction Data. PDF 01-012-0043, UO3.

Download references


X-ray phase analysis was carried out on an AERIS X-ray powder diffractometer (Malvern Panalytical, Netherlands) of the Center for the Collective Use of Physical Research Methods at the Frumkin Institute of Physical Chemistry and Electrochemistry.


The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. A. Kulyukhin.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulemin, V.V., Martynov, K.V., Krasavina, E.P. et al. Cast Stone Matrices Based on Basaltic Melt with Uranium-Bearing Silica Gel. Radiochemistry 64, 158–163 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • stone casting
  • silica gel
  • uranium
  • leaching