Skip to main content

The Role of Phytoplankton in Self-Purification of Water Bodies with Radionuclide Pollutants

Abstract

The review considers the participation of phytoplankton in the self-purification of water bodies from radionuclide pollutants. An assessment of the mobility of the main radionuclides in freshwater reservoirs was carried out and a scale was proposed for assessing the hazard of the main radionuclides in freshwater reservoirs. Based on this approach, it was determined that 129I, 237Np, 226Ra, and 79Se are potentially dangerous. An analysis of the diversity of phytoplankton communities in freshwater reservoirs contaminated with radionuclides was carried out, and literature data on the main mechanisms of radionuclide immobilization by phytoplankton biomass were systematized. The role of silt biomineralization in the long-term immobilization of radionuclides in bottom sediments was assessed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Hu, Q.H., Weng, J.Q., Wang, J.S., J. Environ. Radioact., 2010, vol. 101, no. 6, pp. 426–437. https://doi.org/10.1016/j.jenvrad.2008.08.004

    CAS  Article  PubMed  Google Scholar 

  2. Trapeznikov, A.V., 60Co, 90Sr, 137Cs, i 239,240Pu v presnovodnykh ekosistemakh (60Co, 90Sr, 137Cs, and 239,240Pu Freshwater Ecosystems), Ekaterinburg: Akademiya Nauk, 2010.

    Google Scholar 

  3. Mokrov, Y., Glagolenko, Y., Napier, B., Health Phys., 2000, vol. 79, no. 1, pp. 15–23. https://doi.org/10.1097/00004032-200007000-00006

    CAS  Article  PubMed  Google Scholar 

  4. Kuwabara, J., Yamamoto, M., Oikawa, S., Komura, K., Assinder, D.J., J. Radioanal. Nucl. Chem., 1999, vol. 240, no. 2, pp. 593–601. https://doi.org/10.1007/BF02349419

    CAS  Article  Google Scholar 

  5. Alvarez, R., Sci. Global Secur., 2005, vol. 13, pp. 43–86. https://doi.org/10.1080/08929880590961871

    Article  Google Scholar 

  6. Aleksakhin, R.M., Buldakov, L.A., Gubanov, V.A., Drozhko, E.G., Il’in, L.A., Kryshev, I.I., Linge, I.I., Romanov, G.N., Savkin, M.N., Saurov, M.M., Tikhomirov, F.A., Kholina, Yu.B., Krupnye radiatsionnye avarii: posledstviya i zashchitnye mery (Major Radiation Accidents: Consequences and Potective Measures), 2001.

    Google Scholar 

  7. Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V., Myasoedov, B.F., Science, 2006, vol. 314, no. 5799, pp. 638–641. https://doi.org/10.1126/science.1131307

    CAS  Article  PubMed  Google Scholar 

  8. Kazakov, S.V., Kiselev, V.P., Krylov, A.L., Tr. IBRAE RAN. Vopr. Radioekologi, 2009, no. 11, pp. 241–285.

    Google Scholar 

  9. Moiseenko, T.I., Gashev, S.N., Vestn. Tyumensk. gos. un-ta. Ser.: Ekologiya, 2012, no. 12, pp. 17–27.

    Google Scholar 

  10. German, K.E., Firsova, E.V., Peretrukhin, V.F., Khizhnyak, T.V., Simonoff, M., Radiochemistry, 2003, vol. 45, pp. 250-256. https://doi.org/10.1023/A:1026008108860

    CAS  Article  Google Scholar 

  11. Matishov, D.G., Matishov, G.G., Transfer and Assimilation of Radionuclides in Marine Ecosystems, Radioecology in Northern European Seas, 2004, pp. 267–283. https://doi.org/10.1007/978-3-662-09658-1_7

    Article  Google Scholar 

  12. Men’shikh, T.B., Nikitina, L.V., Rovnyi, S.I., Bolsunovskii, A.Ya., Vopr. Radiats. Bezopasnosti, 2005, vol. 39, no. 3, pp. 71–76.

    Google Scholar 

  13. Guseva, V.P., Chebotina, M.Ya., Trapeznikov, A.V., Vopr. Radiats. Bezopasnosti, 2006, no. 4, pp. 70–75.

    Google Scholar 

  14. Kumar, K.S., Dahms, H.U., Won, E.J., Lee, J.S., Shin, K.H., Ecotoxicol. Environ. Safety, 2015, vol. 113, pp. 329–352. https://doi.org/10.1016/j.ecoenv.2014.12.019

    CAS  Article  Google Scholar 

  15. Shimizu, Y., Curr. Opin. Microbiol., 2003., no. 6, pp. 236–243. https://doi.org/10.1016/S1369-5274(03)00064-X

    CAS  Article  Google Scholar 

  16. Levina, S.G., Doctoral Sci (Biol.) Dissertation, 2007.

  17. Gudkov, D.I., Nazarov, A.B., Kulachinskii, A.V., Zub, L.N., Kaglyan, A.E., Mashina, V.P., Abstracts of Papers, Sakharovskie chteniya 2005 goda: ekologicheskie problemy XXI veka: Mater. 5-i mezhdunar. nauchnoi konf., 20–21 maya 2005, Minsk, Respublika Belarus’ (2005 Years Sakharov Readings: Ecological Problems of 21th Centures, Minsk, Belarus), Minsk, 2005.

  18. Berg, J.S., Jézéquel, D., Duverger, A., Lamy, D., Laberty-Robert, C., Miot, J., PLoS ONE, 2019, vol. 14, no. 2, p. 21. https://doi.org/10.1371/journal.pone.0212787

    CAS  Article  Google Scholar 

  19. Drozhko, E.G., Stukalov, P.M., Aleksakhin, A.I., Ivanov, I.A., Simkina, N.A., Vopr. Radiats. Bezopasnosti, 2006, no. 4, pp. 22–32.

    Google Scholar 

  20. Zinicovscaia, I., Safonov, A., Zelenina, D., Ershova, Y., Boldyrev, K., Algal Res., 2020, vol. 51, ID 102075. https://doi.org/10.1016/j.algal.2020.102075

    Article  Google Scholar 

  21. Traexler, K.A., Utsunomiya, S., Kersting, A.B., Ewing, R.C., MRS Online Proc. Library Arch., 2003, vol. 807, pp. 206–211. https://doi.org/10.1557/PROC-807-653

    Article  Google Scholar 

  22. Boguslavsky, A.E., Gaskova, O.L., Naymushina, O.S., Popova, N.M., Safonov, A.V., Appl. Geochem., 2020, vol. 119, ID 104598. https://doi.org/10.1016/j.apgeochem.2020.104598

    CAS  Article  Google Scholar 

  23. Safonov, A.V., Perepelov, A.V., Babich, T.L., Popova, N.M., Grouzdev, D.S., Filatov, A.V., Shashkov, A.S., Demina, L.I., Nazina, T.N., Int. J. Biol. Macromol., 2020, vol. 165, pp. 2197–2204. https://doi.org/10.1016/j.ijbiomac.2020.10.038

    CAS  Article  PubMed  Google Scholar 

  24. Wood, B.J. and Blundy, J.D., Treatise on Geochemistry, Amsterdam: Elsevier, 2014. https://doi.org/10.1016/B978-0-08-095975-7.00209-6

    Book  Google Scholar 

  25. Komov, V.T., Kurs lektsii, Moscow: Vektor-Tis, 2007.

    Google Scholar 

  26. Corrigall, R., Brit. Inst. Radiol., 2001, vol 77, no. 916. https://doi.org/10.1259/bjr.77.916.770365b

    Article  Google Scholar 

  27. Balonov, M., Barnett, C.L., Belli, M., Beresford, N.A., Berkovsky, V., Bossew, P., Boyer, P.B., Brittain, J.E., Calmon, P., and Carini, F., Tech. Rep., 2010, no. 472.

  28. Rameshkumar, S., Radhakrishnan, K., Aanand, S., and Rajaram, R., Appl. Water Sci., 2019, vol. 9, p. 12. https://doi.org/10.1007/s13201-018-0888-2

    CAS  Article  Google Scholar 

  29. Evtushenko, N.Yu., Kuz’menko, M.I., and Sirenko, L.A., Gidroekologicheskie posledstviya avarii na Chernobyl’skoi AES (Hydroecological Consequences if Chernobyl NPP Accidents), Kiev: Nauk. Dumka, 1992.

    Google Scholar 

  30. Yarushina, M.I., Guseva, V.P., and Chebotina, M.Ya., Ekologiya, 2003, no. 1, pp. 23–29.

    Google Scholar 

  31. Guseva, V.P., Cand. Sci (Biol.) Dissertation, 2000.

  32. Dukhovnaya, N.I., Osipov, D.I., Tryapitsyna, G.A., and Pryakhin, E.A., Vopr. Radiats. Bezopasnosti, 2011, no. 4, pp. 24–36.

    Google Scholar 

  33. Pryakhin, E.A., Tryapitsyna, G.A., and Atamanyuk, N.I., Radiats. Biologiya. Radioekologiya, 2012, vol. 52, no. 4, pp. 419–427.

    CAS  Google Scholar 

  34. Pryakhin, E.A., Tryapitsyna, G.A., Osipov, D.I., Atamanyuk, N.I., Shaposhnikova, I.A., Egorei-chenkov, E.A., Styazhkina, E.V., Mogil’nikova, N.I., Andreev, S.S., Shishkina, E.A., Peretykin, A.A., Aldibekova, A.E., Tyukhai, M.V., Trapeznikov, A.V., Ivanov, I.A., Tarasov, O.V., Mokrov, Yu.G., and Akleev, A.V., Vopr. Radiats. Bezopasnosti, 2018, no. 4, pp. 71–79.

    Google Scholar 

  35. Smagin, A.I., Doctoral Sci (Biol.) Dissertation, 2008.

  36. Bondareva, L., Radiochemistry, 2012, vol. 54, no. 1, pp. 91–96.

    Article  Google Scholar 

  37. Rakitskii, V.N., Bondareva, L.G., and Fedorova, N.E., Nauchnoe obosnovanie zakonomernostei i mekhanizmov antropogennogo vozdeistviya na biotsenoz presnovodnoi ekosistemy (Scientific Substantiation of Patterns and Mechanisms of Anthropogenic Impact on the Biocenosis of Freshwater Ecosystem), Krasnoyarsk: Sib. Federal. Univ., 2020.

    Google Scholar 

  38. Zotina, T., Koster, O., and Juttner, F., Freshwater Biol., 2003, vol. 48, no. 10. https://doi.org/10.1046/j.1365-2427.2003.01134.x

    Article  Google Scholar 

  39. Zotina, T.A., Bolsunovsky, A.Y., and Bondareva, L.G., J. Environ. Radioact., 2009, vol. 101, no. 2, pp. 148–152.

    Article  Google Scholar 

  40. Zotina, T., Dementyev, D., and Alexandrova, Y., J. Environ. Radioact., 2021, vol. 227, ID 106461. https://doi.org/10.1016/j.jenvrad.2020.106461

    CAS  Article  PubMed  Google Scholar 

  41. Zotina, T., Kalacheva, G., and Bolsunovsky, A., J. Radioanal. Nucl. Chem., 2011, vol. 290, no. 2, pp. 447–451. https://doi.org/10.1007/s10967-011-1228-2

    CAS  Article  Google Scholar 

  42. Aleissa, K., Shabana, E.S., and Almasoud, F.I., J. Radioanal. Nucl. Chem., 2004, vol. 260, no. 3, pp. 683–687. https://doi.org/10.1023/b:jrnc.0000028232.52884.61

    CAS  Article  Google Scholar 

  43. Jha, V.N., Tripathi, R.M., Sethy, N.K., and Sahoo, S.K., Sci. Total Environ., 2016, vol. 539, pp. 175–184. https://doi.org/10.1016/j.scitotenv.2015.08.120

    CAS  Article  PubMed  Google Scholar 

  44. Langley, S. and Beveridge, T.J., Appl. Environ. Microbiol., 1999, vol. 65, no. 2, pp. 489–498. https://doi.org/10.1128/AEM.65.2.489-498.1999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Vrionis, H., Anderson, R., Ortiz-Bernad, I., O’Neill, K., Resch, C., Peacock, A., Dayvault, R., White, D., Long, P., and Lovley, D., Appl. Environ. Microbiol., 2005, vol. 71, pp. 6308–6318. https://doi.org/10.1128/10.1128/AEM.69.10.5884-5891.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Marchyulenene, E.D., Doctoral Sci (Biol.) Dissertation, 1994.

  47. Kim, I., Yang, H.M., Park, C.W., Yoon, I.H., Seo, B.K., Kim, E.K., and Ryu, B.G., Sci. Rep., 2019, vol. 9, ID 10149. https://doi.org/10.1038/s41598-019-46586-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Fukuda, S.Y., Iwamoto, K., Atsumi, M., Yokoyama, A., Nakayama, T., Ishida, K., Inouye, I., and Shiraiwa, Y., J. Plant Res., 2014, vol. 127, no. 1, pp. 79–89. https://doi.org/10.1007/s10265-013-0596-9

    CAS  Article  PubMed  Google Scholar 

  49. Rivasseau, C., Farhi, E., Gromova, M., Ollivier, J., and Bligny, R., Spectroscopy, 2010, vol. 24, pp. 381–385. https://doi.org/10.3233/SPE-2010-0459

    CAS  Article  Google Scholar 

  50. Rivasseau, C., Farhi, E., Compagnon, E., Saint Cyr, D.G., Van Lis, R., Falconet, D., Kuntz, M., Atteia, A., and Couté, A., J. Phycol., 2016, vol. 52, no. 5, pp. 689–703. https://doi.org/10.1111/jpy.12442

    CAS  Article  PubMed  Google Scholar 

  51. Rivasseau, C., Farhi, E., Atteia, A., Couté, A., Gromova, M., Saint Cyr, D.G., Boisson, A.M., Féret, A.S., Compagnon, E., and Bligny, R., Energy Environ. Sci., 2013, no. 6, pp. 1230–1239. https://doi.org/10.1039/C2EE23129H

    Article  Google Scholar 

  52. Park, E. and Choi, J., Biotechnol. Bioprocess Eng., 2018, vol. 23, pp. 704–709. https://doi.org/10.1007/s12257-018-0468-1

    CAS  Article  Google Scholar 

  53. Shin, R. and Adams, E., Impact of Cesium on Plants and the Environment, 2017, pp. 101–124. https://doi.org/10.1007/978-3-319-41525-3_6

    Article  Google Scholar 

  54. Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., and Watanabe, H., J. Natural Prod., 2006, vol. 69, no. 3, pp. 443–449. https://doi.org/10.1021/np050354+

    CAS  Article  Google Scholar 

  55. Lee, K.Y., Lee, S.H., Lee, J.E., and Lee, S.Y., J. Environ. Manag., 2019, vol. 233, pp. 83–88. https://doi.org/10.1016/j.jenvman.2018.12.022

    CAS  Article  Google Scholar 

  56. Krejci, M.R., Finney, L., Vogt, S., and Joester, D., ChemSusChem., 2011, vol. 4, no. 4, pp. 470–473. https://doi.org/10.1002/cssc.201000448

    CAS  Article  PubMed  Google Scholar 

  57. Lee, S.Y., Jung, K.H., Lee, J.E., Lee, K.A., Lee, S.H., Lee, J.Y., Lee, J.K., Jeong, J.T., and Lee, S.Y., Bioresource Technol., 2014, vol. 172, pp. 449–452. https://doi.org/10.1016/j.biortech.2014.09.023

    CAS  Article  Google Scholar 

  58. Bondareva, L., Fusion Sci. Technol., 2011, vol. 60., no. 4, pp. 1304–1307. https://doi.org/10.13182/FST11-A12670

    Article  Google Scholar 

  59. Dushenkov, S., Plant Soil., 2003, vol. 249, pp. 167–175. https://doi.org/10.1023/A:1022527207359

    CAS  Article  Google Scholar 

  60. Lasat, M.M., Fuhrmann, M., Ebbs, S.D., Cornish, J.E., and Kochian, L.V., J. Environ. Qual., 1998, vol. 27, no. 1, pp. 165–169. https://doi.org/10.2134/jeq1998.00472425002700010023x

    CAS  Article  Google Scholar 

  61. Yan, L., Van Le, Q., Sonne, C., Yang, Y., Yang H, Gu, H., Ma, N.L., Lam, S.S., and Peng, W., J. Hazard. Mater., 2021, vol. 407. https://doi.org/10.1016/j.jhazmat.2020.124771

    Article  PubMed  Google Scholar 

  62. Kalin, M., Wheeler, W.N., and Meinrath, G., J. Environ. Radioact., 2005, vol. 78, no. 2, pp. 151–177. https://doi.org/10.1016/j.jenvrad.2004.05.002

    CAS  Article  PubMed  Google Scholar 

  63. Iwamoto, K. and Minoda, A., Algae, Intech Open., 2018. https://doi.org/10.5772/intechopen.81492

    Article  Google Scholar 

  64. Yamamoto, T., Goto, I., Kawaguchi, O., Minagawa, K., Ariyoshi, E., and Matsuda, O., Marine Pollut. Bull., 2008, vol. 57, pp. 108–115. https://doi.org/10.1016/j.marpolbul.2007.10.006

    CAS  Article  Google Scholar 

  65. Zalewska, T. and Saniewski, M., Oceanologia, 2011, vol. 53, no. 2, pp. 631–650. https://doi.org/10.5697/oc.53-2.631

    Article  Google Scholar 

  66. German, K.E., Safonov, A.V., Zelenina, D.A., Sitanskaya, A.V., Boldyrev, K.A., and Belova, E.V., J. Environ. Radioact., 2021, vol. 237, ID 106716. https://doi.org/10.1016/j.jenvrad.2021.106716

    CAS  Article  PubMed  Google Scholar 

  67. Meyer, J.S., Davidson, W., Sundby, B., and Oris, J.T., Bioavailability—Physical, Chemical, and Biological Interactions, CRC, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Safonov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safonov, A.V., Ognistaya, A.V., Boldyrev, K.A. et al. The Role of Phytoplankton in Self-Purification of Water Bodies with Radionuclide Pollutants. Radiochemistry 64, 120–132 (2022). https://doi.org/10.1134/S1066362222020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222020023

Keywords:

  • bottom sediments
  • radionuclides
  • toxicity
  • mobility
  • surface water bodies