Reprocessing of Irradiated [18O]H2O under the Conditions of a PET Center

Abstract

The possibility of reprocessing of irradiated [18O]H2O after isolation of [18F]fluoride ion from it (regenerate) under the conditions of the cyclotron-radiochemical laboratory of an operating PET center was examined. The radionuclide and chemical composition of [18O]H2O and the degree of its enrichment in 18O before and after distillation at atmospheric pressure were studied comprehensively. The suggested method allows efficient removal of long-lived γ-emitting radionuclides (56Co, 57Co, 58Co, 65Zn, 54Mn, 51Cr) from the [18O]H2O regenerate. The distillation reduces the content of residual solvents (acetaldehyde, acetone, isopropanol, ethanol, acetonitrile), whereas the content of 3H and 18O in [18O]H2O changes within the measurement uncertainty. The distillation residues and decontamination solutions after neutralization can be jointly cemented to incorporate the γ-emitters into a compact matrix with the aim of its subsequent delivery to specialized organizations performing long-term storage and disposal of solid radioactive waste.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Oehr, P., PET and PET-CT in Oncology, Berlin: Springer, 2004.

    Google Scholar 

  2. 2.

    Brinkevich, S.D., Sukonko, L.G., Chizh, G.V., and Naumovich, A.S., Med.-Biol. Probl. Zhiznedeyat., 2013, no. 10, pp. 129–137.

    Google Scholar 

  3. 3.

    Brinkevich, D.I., Brinkevich, S.D., Baranovskii, O.A., et al., Med. Fiz., 2018, no. 1, pp. 80–88.

    Google Scholar 

  4. 4.

    Uhlending, A., Henneren, H., Hugenberg, V., and Burchert, W., Instruments, 2018, vol. 2, no. 3, pp. 12–19.

    Article  Google Scholar 

  5. 5.

    Al Rayyes, A.H., Nukleonika, 2010, vol. 55, no. 3, pp. 401–405.

    CAS  Google Scholar 

  6. 6.

    Ito, S., Saze, T., Sakane, H., et al., Appl. Radiat. Isot., 2004, vol. 61, no. 6, pp. 1179–1183.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Brinkevich, S.D., Reztsov, I.A., and Shadyro, O.I., High Energy Chem., 2014, vol. 48, no. 5, pp. 303–309.

    Article  CAS  Google Scholar 

  8. 8.

    Asti, M., Grassi, E., Sghedoni, R., et al., Appl. Radiat. Isot., 2007, vol. 65, pp. 831–835.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Cole, L.G., Patent US 5 531 865, 1996.

    Google Scholar 

  10. 10.

    Moon, W.Y., Oh, S.J., Cheon, J.H., et al., Appl. Radiat. Isot., 2007, vol. 65, pp. 635–640.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Krot, V.O., Tugai, O.V., Brinkevich, D.I., et al., Vestn. Polotsk. Gos. Univ., 2018, no. 4, pp. 80–86.

    Google Scholar 

  12. 12.

    Bowden, L., Vintró, L.L., Mitchell, P.I., et al., Appl. Radiat. Isot., 2009, vol. 67, no. 2, pp. 248–255.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Bazanov, A.V. and Blinichev, V.N., Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol., 2007, vol. 50, no. 12, pp. 112–114.

    Google Scholar 

  14. 14.

    Reichardt, Ch., Solvents and Solvent Effects in Organic Chemistry, Weinheim: VCH, 1988.

    Google Scholar 

  15. 15.

    Koning, A.J., Rochman, D., Van der Marck, S., et al., TENDL-2014: TALYS-Based Evaluated Nuclear Data Library, 2014, http://www.talys.eu/tendl-2012.

    Google Scholar 

  16. 16.

    Hess, E.V., Takacs, S.M., Scholten, B., et al., Radiochim. Acta, 2001, vol. 89, no. 6, pp. 357–362.

    Article  CAS  Google Scholar 

  17. 17.

    Firestone, R.B. and Shirley, V.S., Table of Radioactive Isotopes, New York: Wiley, 1988.

    Google Scholar 

  18. 18.

    Dziel, T., Tyminski, Z., and Sobczyk, K., Appl. Radiat. Isot., 2016, vol. 109, no. 2, pp. 242–246.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Mochizuki, S., Ogata, Y., Hatano, K., et al., J. Nucl. Sci. Technol., 2006, vol. 43, no. 4, pp. 348–353.

    Article  CAS  Google Scholar 

  20. 20.

    Ito, S., Sakane, H., and Deji, S., Appl. Radiat. Isot., 2006, vol. 64, no. 3, pp. 298–305.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Requirements to ensuring radiation safety of the staff and population in radioactive waste management, Sanitary Rules and Regulations, Approved by the Decision of the Ministry of Public Health of the Belarus Republic no. 142 of Dec. 31, 2015.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. D. Brinkevich.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Russian Text © The Author(s), 2019, published in Radiokhimiya, 2019, Vol. 61, No. 4, pp. 344–350.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brinkevich, S.D., Krot, V.O., Brinkevich, D.I. et al. Reprocessing of Irradiated [18O]H2O under the Conditions of a PET Center. Radiochemistry 61, 483–490 (2019). https://doi.org/10.1134/S1066362219040131

Download citation

Keywords

  • [18O]H2O regenerate
  • [18F]fluoride
  • long-lived radionuclides
  • radiopharmaceuticals
  • distillation
  • tritium