Advertisement

Radiochemistry

, Volume 61, Issue 4, pp 483–490 | Cite as

Reprocessing of Irradiated [18O]H2O under the Conditions of a PET Center

  • S. D. BrinkevichEmail author
  • V. O. Krot
  • D. I. Brinkevich
  • O. V. Tugai
  • I. P. Edimecheva
  • A. A. Ivanyukovich
Article
  • 8 Downloads

Abstract

The possibility of reprocessing of irradiated [18O]H2O after isolation of [18F]fluoride ion from it (regenerate) under the conditions of the cyclotron-radiochemical laboratory of an operating PET center was examined. The radionuclide and chemical composition of [18O]H2O and the degree of its enrichment in 18O before and after distillation at atmospheric pressure were studied comprehensively. The suggested method allows efficient removal of long-lived γ-emitting radionuclides (56Co, 57Co, 58Co, 65Zn, 54Mn, 51Cr) from the [18O]H2O regenerate. The distillation reduces the content of residual solvents (acetaldehyde, acetone, isopropanol, ethanol, acetonitrile), whereas the content of 3H and 18O in [18O]H2O changes within the measurement uncertainty. The distillation residues and decontamination solutions after neutralization can be jointly cemented to incorporate the γ-emitters into a compact matrix with the aim of its subsequent delivery to specialized organizations performing long-term storage and disposal of solid radioactive waste.

Keywords

[18O]H2O regenerate [18F]fluoride long-lived radionuclides radiopharmaceuticals distillation tritium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Oehr, P., PET and PET-CT in Oncology, Berlin: Springer, 2004.CrossRefGoogle Scholar
  2. 2.
    Brinkevich, S.D., Sukonko, L.G., Chizh, G.V., and Naumovich, A.S., Med.-Biol. Probl. Zhiznedeyat., 2013, no. 10, pp. 129–137.Google Scholar
  3. 3.
    Brinkevich, D.I., Brinkevich, S.D., Baranovskii, O.A., et al., Med. Fiz., 2018, no. 1, pp. 80–88.Google Scholar
  4. 4.
    Uhlending, A., Henneren, H., Hugenberg, V., and Burchert, W., Instruments, 2018, vol. 2, no. 3, pp. 12–19.CrossRefGoogle Scholar
  5. 5.
    Al Rayyes, A.H., Nukleonika, 2010, vol. 55, no. 3, pp. 401–405.Google Scholar
  6. 6.
    Ito, S., Saze, T., Sakane, H., et al., Appl. Radiat. Isot., 2004, vol. 61, no. 6, pp. 1179–1183.CrossRefGoogle Scholar
  7. 7.
    Brinkevich, S.D., Reztsov, I.A., and Shadyro, O.I., High Energy Chem., 2014, vol. 48, no. 5, pp. 303–309.CrossRefGoogle Scholar
  8. 8.
    Asti, M., Grassi, E., Sghedoni, R., et al., Appl. Radiat. Isot., 2007, vol. 65, pp. 831–835.CrossRefGoogle Scholar
  9. 9.
    Cole, L.G., Patent US 5 531 865, 1996.Google Scholar
  10. 10.
    Moon, W.Y., Oh, S.J., Cheon, J.H., et al., Appl. Radiat. Isot., 2007, vol. 65, pp. 635–640.CrossRefGoogle Scholar
  11. 11.
    Krot, V.O., Tugai, O.V., Brinkevich, D.I., et al., Vestn. Polotsk. Gos. Univ., 2018, no. 4, pp. 80–86.Google Scholar
  12. 12.
    Bowden, L., Vintró, L.L., Mitchell, P.I., et al., Appl. Radiat. Isot., 2009, vol. 67, no. 2, pp. 248–255.CrossRefGoogle Scholar
  13. 13.
    Bazanov, A.V. and Blinichev, V.N., Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol., 2007, vol. 50, no. 12, pp. 112–114.Google Scholar
  14. 14.
    Reichardt, Ch., Solvents and Solvent Effects in Organic Chemistry, Weinheim: VCH, 1988.Google Scholar
  15. 15.
    Koning, A.J., Rochman, D., Van der Marck, S., et al., TENDL-2014: TALYS-Based Evaluated Nuclear Data Library, 2014, http://www.talys.eu/tendl-2012. Google Scholar
  16. 16.
    Hess, E.V., Takacs, S.M., Scholten, B., et al., Radiochim. Acta, 2001, vol. 89, no. 6, pp. 357–362.CrossRefGoogle Scholar
  17. 17.
    Firestone, R.B. and Shirley, V.S., Table of Radioactive Isotopes, New York: Wiley, 1988.Google Scholar
  18. 18.
    Dziel, T., Tyminski, Z., and Sobczyk, K., Appl. Radiat. Isot., 2016, vol. 109, no. 2, pp. 242–246.CrossRefGoogle Scholar
  19. 19.
    Mochizuki, S., Ogata, Y., Hatano, K., et al., J. Nucl. Sci. Technol., 2006, vol. 43, no. 4, pp. 348–353.CrossRefGoogle Scholar
  20. 20.
    Ito, S., Sakane, H., and Deji, S., Appl. Radiat. Isot., 2006, vol. 64, no. 3, pp. 298–305.CrossRefGoogle Scholar
  21. 21.
    Requirements to ensuring radiation safety of the staff and population in radioactive waste management, Sanitary Rules and Regulations, Approved by the Decision of the Ministry of Public Health of the Belarus Republic no. 142 of Dec. 31, 2015.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. D. Brinkevich
    • 1
    • 2
    Email author
  • V. O. Krot
    • 1
    • 2
  • D. I. Brinkevich
    • 1
    • 2
  • O. V. Tugai
    • 1
    • 2
  • I. P. Edimecheva
    • 2
  • A. A. Ivanyukovich
    • 3
  1. 1.Aleksandrov Republican Scientific and Practical Center of Oncology and Medical RadiologyMinskBelarus
  2. 2.Belarussian State UniversityMinskBelarus
  3. 3.Belarussian State Institute of MetrologyMinskBelarus

Personalised recommendations