Skip to main content

Adsorption of Thorium Ions Using Trioctylphosphine Oxide Impregnated Dowex 1×4 Powder

Abstract

Dowex 1×4-trioctylphosphine oxide powder (DTP) was prepared, characterized, and studied as an adsorbent for the adsorption of Th(IV) from aqueous solutions. The adsorption of Th(IV) strongly depends on pH. The adsorption follows the pseudo-second-order kinetics, and the adsorption isotherms agree well with the Langmuir model with a maximum adsorption capacity of 132.1 mg g−1.

This is a preview of subscription content, access via your institution.

References

  1. Zhang, S., Liu, P., and Zhang, B., World Nucl. Geosci., 2005, vol. 22, p. 98.

    Google Scholar 

  2. Talip, Z., Eral, M., and Hicsonmez, U., J. Environ. Radioact., 2009, vol. 100, p. 139.

    Article  CAS  PubMed  Google Scholar 

  3. Paiva, A.P. and Malik, P., J. Radioanal. Nucl. Chem., 2004, vol. 261, p. 485.

    Article  CAS  Google Scholar 

  4. Zhu, Z.W., Pranolo, Y., and Cheng, C.Y., Miner. Eng., 2015, vol. 77, p. 185.

    Article  CAS  Google Scholar 

  5. Rao, T.P., Meilda, P., and Gladis, J.M., Talanta, 2006, vol. 68, p. 1047.

    Article  CAS  PubMed  Google Scholar 

  6. Shaeri, M., Torab-Mostaedi, M., and Kelishami, A.R., J. Radioanal. Nucl. Chem., 2015, vol. 303, p. 2093.

    CAS  Google Scholar 

  7. Zhong, X.M., and Wu, Y.H., J. Radioanal. Nucl. Chem., 2012, vol. 292, p. 355.

    Article  CAS  Google Scholar 

  8. Muraviev, D., Ghantous, L., and Valiente, M., React. Funct. Polym., 1998, vol. 38, p. 259.

    Article  CAS  Google Scholar 

  9. Demirel, N., Merdivan, M., Pirinccioglu, N., and Hamamci, C., Anal. Chim. Acta, 2003, vol. 485, p. 213.

    Article  CAS  Google Scholar 

  10. Van Hecke, K., and Modolo, G., J. Radioanal. Nucl. Chem., 2004, vol. 261, p. 269.

    Article  CAS  Google Scholar 

  11. Raouf, M.W.A. and El-Kamash, A.M., J. Radioanal. Nucl. Chem., 2006, vol. 267, p. 389.

    Article  CAS  Google Scholar 

  12. Hussein, A.E.M., J. Radioanal. Nucl. Chem., 2011, vol. 289, p. 321.

    Article  CAS  Google Scholar 

  13. Cheira, M.F., El-Didamony, A.M., and Atia, B.M., IOSR J. Appl. Chem., 2014, vol. 7, no. 5, pp. 32–40.

    Article  Google Scholar 

  14. Hosseini, M.S., Bazrafshan, A.A., and Hosseini-Bandegharaei, A., Sep. Sci. Technol., 2016, vol. 51, p. 1328.

    Article  CAS  Google Scholar 

  15. Tang, Y.P., Bao, S.X., Zhang, Y.M., and Liang, L., React. Funct. Polym., 2017, vol. 113, p. 50.

    Article  CAS  Google Scholar 

  16. Cheira, M.F., Atia, B.M., and Kouraim, M.N., J. Radiat. Res. Appl. Sci., 2017, vol. 10, pp. 307–319.

    Article  CAS  Google Scholar 

  17. Okabayashi, Y., Oh, R., Nakagawa, T., et al., Analyst, 1988, vol. 113, p. 829.

    Article  CAS  Google Scholar 

  18. Matsusaki, K., Hashimoton, O., Kuroki, O., and Sata, T., Anal. Sci., 1997, vol. 13, no. 3, pp. 345–349.

    Article  CAS  Google Scholar 

  19. Amara, M., and Kerdjouj, H., Hydrometallurgy, 2002, vol. 65, no. 1, pp. 59–68.

    Article  CAS  Google Scholar 

  20. Takata, K., Yamamoto, Y., and Sata, T., Bull. Chem. Soc. Jpn., 1996, vol. 69, p. 797.

    Article  CAS  Google Scholar 

  21. Amara, M. and Kerdjoudj, H., Talanta, 2003, vol. 60, no. 5, pp. 991–1001.

    Article  CAS  PubMed  Google Scholar 

  22. Takeuchi, T., Miwa, S.T., Hashimoto, Y., and Moriama, H., Analysis, 1998, vol. 26, p. 61.

    CAS  Google Scholar 

  23. Amara, M. and Kerdjoudj, H., Anal. Chim. Acta, 2004, vol. 508, pp. 247–253.

    Article  CAS  Google Scholar 

  24. Afifi, S.Y., El Sheikh, E.M., Elsayed, M.A.S., and Mustafa, M.M., Arab J. Nucl. Sci. Appl., 2012, vol. 45, no. 3, pp. 35–51.

    Google Scholar 

  25. Gado, M. and Zaki, S., Int. J. Waste Resources, 2016, vol. 6, no. 1. DOI: https://doi.org/10.4172/2252-5211.1000194.

    Google Scholar 

  26. Gado, M.A. and Morsy, A.M.A., Radiochemistry, 2017, vol. 59, no. 5, pp. 500–506. DOI: https://doi.org/10.1134/s1066362217050101.

    Article  CAS  Google Scholar 

  27. Ho, Y.S. and McKay, G., Process Biochem., 1999, vol. 34, p. 451.

    Article  CAS  Google Scholar 

  28. Sherief, M., Ghoneim, N.A., and El-Batal, H.A., J. Mater. Sci.: Mater. Electron., 2004, vol. 15, p. 273.

    Google Scholar 

  29. Zhang, H.W., Noonan, O., Huang, X.D., et al., ACS Nano, 2016, vol. 10, p. 4579.

    Article  CAS  PubMed  Google Scholar 

  30. Li, T., Liu, H., Zeng, L., et al., J. Mater. Chem., 2011, vol. 21, p. 12 865.

    Article  CAS  Google Scholar 

  31. Liang, S., Neisius, M., Mispreuve, H., et al., Polym. Degrad. Stab., 2012, vol. 97, no. 11, p. 2428. DOI: https://doi.org/10.1016/j.polymdegradstab.2012.07.

    Article  CAS  Google Scholar 

  32. Fang, J. and Shen, P.K., J. Membr. Sci., 2006, vol. 285, nos. 1–2, p. 317. DOI: https://doi.org/10.1016/j.memsci.2006.08.037.

    Article  CAS  Google Scholar 

  33. Ezzeldin, H.A., Apblett, A., and Foutch, G.L., Int. J. Polym. Sci., 2010, p. 1–9. DOI: https://doi.org/10.1155/2010/684051.

    Google Scholar 

  34. Wang, Y., Wang, Z.S., Gu, Z., et al., J. Radioanal. Nucl. Chem., 2015, vol. 304, p. 1329.

    Article  CAS  Google Scholar 

  35. Amer, T.E., El-Sheikh, E.M., Gado, M.A., et al., Sep. Sci. Technol., 2017, vol. 53, p. 1522. DOI: https://doi.org/10.1080/01496395.2017.1405039.

    Article  CAS  Google Scholar 

  36. Tobiasz, A., Walas, S., Hernandez, A.S., and Mrowiec, H., Talanta, 2012, vol. 96, p. 89.

    Article  CAS  PubMed  Google Scholar 

  37. Negm, S.H., Abd El-Hamid, A.A.M., Gado, M.A., and El-Gendy, H.S., J. Radioanal. Nucl. Chem., 2019, vol. 319, no. 1, pp. 327–337. DOI: https://doi.org/10.1007/s10967-018-6356-5.

    Article  CAS  Google Scholar 

  38. Langmuir, I., J. Am. Chem. Soc., 1916, vol. 38, pp. 2221–2295.

    Article  CAS  Google Scholar 

  39. Gado, M.A., Sep. Sci. Technol., 2018, vol. 53, no. 13, pp. 2016–2033. DOI: https://doi.org/10.1080/01496395.2018.1443130.

    Article  CAS  Google Scholar 

  40. Freundlich, H.M.F., J. Phys. Chem., 1906, vol. 57, pp. 385–471.

    CAS  Google Scholar 

  41. Gado, M. and Morsy, A., Am. J. Mater. Synth. Process., 2017, vol. 2, p. 32. DOI: https://doi.org/10.11648/j.ajmsp.20170203.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gado.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gado, M.A., Atia, B.M. Adsorption of Thorium Ions Using Trioctylphosphine Oxide Impregnated Dowex 1×4 Powder. Radiochemistry 61, 168–176 (2019). https://doi.org/10.1134/S1066362219020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362219020061

Keywords

  • adsorption
  • thorium(IV)
  • Dowex 1×4
  • TOPO
  • impregnation