Advertisement

Radiochemistry

, Volume 59, Issue 6, pp 562–569 | Cite as

Oxidation state and coordination surrounding of iron and uranium in sodium aluminum iron phosphate glasses

  • S. V. StefanovskyEmail author
  • A. A. Shiryaev
  • Yu. A. Teterin
  • S. N. Kalmykov
  • Ya. S. Glazkova
Article

Abstract

The oxidation state of Fe and U and the coordination surrounding of Fe in uranium-containing sodium aluminum iron phosphate glasses were determined by analysis of the FeK and UL3 X-ray absorption nearedge structure (XANES), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy on 57Fe nuclei. Uranium is present in the glasses in the form of U(V) and U(VI), and iron, in the form of Fe(III) and Fe(II), mainly in the distorted octahedral surrounding. The fraction of U in various oxidation states depends on the form of untroducing uranium (UO2 or UO3) and on the oxide concentration. With an increase in the UO3 concentration in glasses, the fraction of U(VI) increases and the fraction Fe(III) relative to Fe(II) decreases.

Keywords

iron uranium sodium aluminum iron phosphate glasses XANES method X-ray photoelectron spectroscopy Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Veal, B.W., Mundy, J.N., and Lam, D.J., in Handbook on the Physics and Chemistry of the Actinides, Freeman, A.J. and Lander, G.H., Eds., Elsevier Science, 1987, pp. 271–309.Google Scholar
  2. 2.
    Farges, F., Ponader, C.W., Calas, G., and Brown, G.E., Jr., Geochim. Cosmochim. Acta., 1992, vol. 56, pp. 4205–4220.CrossRefGoogle Scholar
  3. 3.
    Aloy, A.S., Trofimenko, A.V., Iskhakova, O.A., and Jardine, L.J., Mater. Res. Soc. Symp. Proc., 2004, vol. 824, pp. 345–350.CrossRefGoogle Scholar
  4. 4.
    Karabulut, M., Marasinghe, G.K., Ray, C.S., et al., J. Mater. Res., 2000, vol. 15, no. 9, pp. 1972–1984.CrossRefGoogle Scholar
  5. 5.
    Stefanovsky, S.V., Marra, J.C., Shiryaev, A.A., and Zubavichus, Y.V., Glass Technol.: Eur. J. Glass Sci. Technol. A, 2009, vol. 50, no. 1, pp. 47–52.Google Scholar
  6. 6.
    Stefanovsky, S.V., Shiryaev, A.A., Zubavichus, J.V., et al., Glass Phys. Chem., 2009, vol. 35, no. 2, pp. 141–148.CrossRefGoogle Scholar
  7. 7.
    Stefanovsky, S.V., Stefanovskaya, O.I., Murzin, V.Yu., et al., Dokl. Phys. Chem., 2016, vol. 468, part 1, pp. 76–79.CrossRefGoogle Scholar
  8. 8.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instr. Meth. Phys. Res. A, 2009, vol. 603, pp. 95–98.CrossRefGoogle Scholar
  9. 9.
    Brow, R.K., Arens, C.M., Yu, X., and Day, D.E., Phys. Chem. Glasses, 1994, vol. 35, no. 3, p. 132.Google Scholar
  10. 10.
    Matsnev, M.E. and Rusakov, V.S., AIP Conf. Proc., 2012, vol. 1489, pp. 178–185.CrossRefGoogle Scholar
  11. 11.
    Brown, G.E., Jr., Waychunas, G.A., Ponader, C.W., et al., J. Phys. Coll., 1986, vol. 47, no. C8, pp. C8-661–C8-668.Google Scholar
  12. 12.
    Binsted, N., Greaves, G.N., and Henderson, C.M.B., J. Phys. Coll., 1986, vol. 47, no. C8, pp. C8-837–C8-840.Google Scholar
  13. 13.
    Karabulut, M., Marasinghe, G.K., Ray, C.S., et al., J. Non-Cryst. Solids, 2002, vol. 306, pp. 182–192.CrossRefGoogle Scholar
  14. 14.
    Berry, A.J., O’Neill, H.St.C., Jayasuriya, K.D., et al., Am. Miner., 2003, vol. 88, pp. 967–977.CrossRefGoogle Scholar
  15. 15.
    Stefanovsky, S.V., Shiryaev, A.A., Zubavichus, Y.V., et al., Mater. Res. Soc. Symp. Proc., 2013, vol. 1518, pp. 59–64.CrossRefGoogle Scholar
  16. 16.
    Glazkova, Ya.S., Kalmykov, S.N., Presniakov, I.A., et al., Dokl. Phys. Chem., 2015, vol. 463, part 1, pp. 145–149.CrossRefGoogle Scholar
  17. 17.
    Stefanovsky, S.V., Stefanovsky, O.I., Kadyko, M.I., et al., J. Non-Cryst. Solids, 2015, vol. 425, pp. 138–145.CrossRefGoogle Scholar
  18. 18.
    Yu, X., Day, D.E., Long, G.R., and Brow, R.K., J. Non- Cryst. Solids, 1977, vol. 215, pp. 21–31.CrossRefGoogle Scholar
  19. 19.
    Yamashita, T. and Hayes, P., Appl. Surf. Sci., 2008, vol. 254, pp. 2441–2449.CrossRefGoogle Scholar
  20. 20.
    Teterin, Yu.A., Kulakov, V.M., Baev, A.S., et al., Phys. Chem. Miner., 1981, vol. 7, pp. 151–158.CrossRefGoogle Scholar
  21. 21.
    Bera, S., Sali, S.K., Sampath, S., et al., J. Nucl. Mater., 1998, vol. 255, pp. 26–33.CrossRefGoogle Scholar
  22. 22.
    Schindler, M., Hawthorne, F.C., Freund, M.S., and Burns, P.C., Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 2471–2487.CrossRefGoogle Scholar
  23. 23.
    Schreiber, H.D., Minnix, L.M., Carpenter, B.E., and Solberg, T.N., Phys. Chem. Glasses, 1983, vol. 24, pp. 155–160.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. V. Stefanovsky
    • 1
    Email author
  • A. A. Shiryaev
    • 1
    • 2
  • Yu. A. Teterin
    • 2
    • 3
  • S. N. Kalmykov
    • 1
    • 2
  • Ya. S. Glazkova
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Radiochemistry ChairMoscow State UniversityMoscowRussia
  3. 3.National Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations