Skip to main content
Log in

Processes for treatment of liquid radioactive waste containing seawater

  • Published:
Radiochemistry Aims and scope

Abstract

The main sources of formation of liquid radioactive waste (LRW) containing seawater are determined, and the main problems arising in management of such waste are analyzed. Sorption methods for removing long-lived Cs and Sr radionuclides from highly mineralized (>1 g L–1) LRW are determined. The main physicochemical and sorption characteristics, advantages, and drawbacks of candidate sorbents for removing Cs and Sr radionuclides are described. Examples of using SRM and VS-5 chemical reaction sorption materials developed for removing Sr from LRW with the mineralization of up to 60 g L–1 are given. The results of studying composite materials based on BaSiO3 and resorcinol–formaldehyde resins, intended for removing Cs and Sr radionuclides from seawater, are analyzed. Composite sorbents of such type efficiently remove Cs and Sr radionuclides from seawater. Processes developed by the authors and brought into practice at various plants of the Far East for treatment of multicomponent LRW formed in the course of operation, repair, and decommissioning of nuclear-powered surface ships and submarines are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harjula, R., Lehto, Y., Tusa, E., and Paavola, A., Nucl. Technol., 1994, vol. 107, no. 3, pp. 272–278.

    Article  CAS  Google Scholar 

  2. Avramenko, V.A., Voit A.V., Golub, A.V., et al., At. Energy, 2008, vol. 105, no. 2, pp. 150–154.

    Article  CAS  Google Scholar 

  3. Zheleznov, V.V. and Vysotskii, V.L., At. Energy, 2002, vol. 92, no. 6, pp. 493–500.

    Article  CAS  Google Scholar 

  4. Nenoff, T.M. and Krumhansl, J.L., Solvent Extr. Ion Exch., 2012, vol. 30, no. 1, pp. 33–40.

    Article  CAS  Google Scholar 

  5. Solbra, N., Allison, S., Waite, S., et al., Environ. Sci. Technol., 2001, vol. 35, pp. 626–629.

    Article  CAS  Google Scholar 

  6. Hassan, N.M., Adu-Wusu, K., and Marra, J.C., J. Radioanal. Nucl. Chem., 2005, vol. 262, no. 3, pp. 579–586.

    Article  Google Scholar 

  7. Avramenko, V.A., Burkov, I.S., Glushchenko, V.Yu., et al., Vestn. Dal’nevost. Otdel. Ross. Akad. Nauk, 2002, no. 3, pp. 7–21.

    Google Scholar 

  8. Janauer, G.E., Gibbons, R.E., and Bernier, W.E., in Ion Exchange and Solvent Extraction: A Series of Advances, New York, 1985, vol. 9, pp. 53–173.

    CAS  Google Scholar 

  9. Ryzhen’kov, A.P. and Egorov, Yu.V., Radiokhimiya, 1995, vol. 37, no. 6, pp. 549–553.

    Google Scholar 

  10. Marton, G., Szanya, T., Hanak, L., et al., Chem. Eng. Sci., 1996, vol. 51, no. 11, pp. 2655–2660.

    Article  CAS  Google Scholar 

  11. Avramenko, V.A., Burkov, I.S., Zheleznov, V.V., et al., At. Energy, 2002, vol. 92, no. 6, pp. 488–492.

    Article  CAS  Google Scholar 

  12. Sokol’nitskaya, T.A., Avramenko, V.A., Burkov, I.S., et al., Russ. J. Phys. Chem. A, 2004, vol. 78, no. 3, pp. 411–415.

    Google Scholar 

  13. Šebesta, F., J. Radioanal. Nucl. Chem., 1997, vol. 220, no. 1, pp. 77–88.

    Article  Google Scholar 

  14. Egorin, A.M., Sokol’nitskaya, T.A., Tutov, M.V., et al., Dokl. Phys. Chem., 2015, vol. 460, no. 1, pp. 10–14.

    Article  CAS  Google Scholar 

  15. Dalrymple, W., Nucl. Eng. Int., 2012, July, pp. 18–20.

    Google Scholar 

  16. Horne, R.A., Marine Chemistry. The Structure of Water and the Chemistry of the Hydrosphere, New York: Wiley–Interscience, 1969.

    Google Scholar 

  17. Pavlotskaya, F.I. and Myasoedov, B.F., Sovremennye metody razdeleniya i opredeleniya radioaktivnykh elementov: Sbornik nauchnykh trudov (Modern Methods for Separation and Determination of Radioactive Elements: Coll. of Scientific Papers), Myasoedov, B.F. and Davydov, A.V., Eds., Moscow: Nauka, 1989, p. 36.

    Google Scholar 

  18. Worldwide marine radioactivity studies (WOMARS). Radionuclide levels in oceans and seas, IAEATECDOC-1429, Vienna: IAEA, 2005.

  19. Sergienko, V.I., Avramenko, V.A., and Glushchenko, V.Yu., J. Ecotechnol. Res., 1995, vol. 1, no. 2, p. 152.

    Google Scholar 

  20. Avramenko, V.A., Vasilevskii, V.A., Glushchenko, V.Yu., et al., Vestn. Dal’nevost. Otdel. Ross. Akad. Nauk, 2000, no. 5, pp. 64–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Tananaev.

Additional information

Original Russian Text © V.A. Avramenko, A.M. Egorin, E.K. Papynov, T.A. Sokol’nitskaya, I.G. Tananaev, V.I. Sergienko, 2017, published in Radiokhimiya, 2017, Vol. 59, No. 4, pp. 355–360.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramenko, V.A., Egorin, A.M., Papynov, E.K. et al. Processes for treatment of liquid radioactive waste containing seawater. Radiochemistry 59, 407–413 (2017). https://doi.org/10.1134/S1066362217040142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362217040142

Keywords

Navigation