Advertisement

Radiochemistry

, Volume 59, Issue 2, pp 166–169 | Cite as

Removal of 90Sr from nitric acid solutions with sorbents based on di-tert-butyldicyclohexyl-18-crown-6

  • V. V. Milyutina
  • N. A. Nekrasova
  • I. I. Dovhyi
  • N. A. Bezhin
  • V. E. Baulin
  • A. Yu. Tsivadze
Article

Abstract

A series of impregnated sorbents based on di-tert-butyldicyclohexyl-18-crown-6 (DTBDCH18C6), various diluents (1-octanol, nitrobenzene, telomeric alcohol n3), and supports (Porolas-Т, LPS-500, hydrophobized silica gel) for removing tracer and weighable amounts of Sr ions from nitric acid solutions were prepared. The distribution coefficient of tracer amounts of 90Sr on all the synthesized sorbents increases with an increase in the HNO3 concentration in the range 1–7 M. The most pronounced increase in the sorption occurs with an increase in the HNO3 concentration to 3 M. The maximal distribution coefficient of 90Sr (K d = 158 cm3 g–1) is reached for the sorbent based on DTBDCH18C6 and 1-octanol in 7 M HNO3. Experiments on sorption of weighable amounts of Sr2+ ions show that the static capacity of all the prepared sorbents for Sr in nitric acid solutions amounts to 4.3, 9.2, and 8.4 mg g–1 for the sorbents based on 1-octanol, nitrobenzene, and telomeric alcohol n3, respectively. The synthesized sorbents are suitable for radioanalytical determination of Sr radionuclides in liquid radioactive waste and in radioactively contaminated natural objects.

Keywords

impregnated sorbents di-tert-butyldicyclohexyl-18-crown-6 1-octanol nitrobenzene telomeric alcohol n3 styrene–divinylbenzene copolymer hydrophobized silica gel sorption strontium-90 nitric acid solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horwitz, E.Ph., Chiarizia, R., and Dietz, M.L., Solvent Extr. Ion Exch., 1992, vol. 10, no. 2, pp. 313–336.CrossRefGoogle Scholar
  2. 2.
    Dietz, M.L., Yaeger, J., Sajdak, L.R., and Jensen, M.P., Sep. Sci. Technol., 2005, vol. 40, nos. 1–3, pp. 349–366.CrossRefGoogle Scholar
  3. 3.
    Zhang, A., Wei, Y.Z., Kumagai, M., and Koyama, T., J. Radioanal. Nucl. Chem., 2004, vol. 262, no. 3, pp. 739–744.CrossRefGoogle Scholar
  4. 4.
    Bezhin, N.A., Dovhyi, I.I., and Lyapunov, A.Yu., J. Radioanal. Nucl. Chem., 2015, vol. 303, no. 3, pp. 1927–1931.Google Scholar
  5. 5.
    Chuang, J.T. and Lo, J.G., J. Radioanal. Nucl. Chem., 1996, vol. 204, no. 1, pp. 83–93.CrossRefGoogle Scholar
  6. 6.
    Kremlyakova, N.Y., J. Radioanal. Nucl. Chem., 1993, vol. 170, no. 1, pp. 189–196.CrossRefGoogle Scholar
  7. 7.
    Voroshilov, Yu.A., Logunov, M.V., Smol’yanikhin, K.V., and Yakovlev, N.G., Vopr. Radiats. Bezopasn., 2013, no. 2, pp. 23–33.Google Scholar
  8. 8.
    Ananyev, A.V., Tsarenko, N.A., Strelnikova, A.M., et al., Russ. Chem. Bull., 2014, vol. 63, no. 6, pp. 1308–1311.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • V. V. Milyutina
    • 1
  • N. A. Nekrasova
    • 1
  • I. I. Dovhyi
    • 2
    • 3
  • N. A. Bezhin
    • 2
  • V. E. Baulin
    • 1
    • 4
  • A. Yu. Tsivadze
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Sevastopol State UniversitySevastopolRussia
  3. 3.Marine Hydrophysical InstituteRussian Academy of SciencesSevastopolRussia
  4. 4.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations