Skip to main content
Log in

Regional flow and transport simulation of liquid radioactive waste disposal at the Siberian chemical combine for long- and super-long-term postinjection periods

  • Published:
Radiochemistry Aims and scope


Regional groundwater flow and transport models were substantiated for the site of underground disposal of liquid radioactive waste from the Siberian Chemical Combine. The migration of a neutral component and two radionuclides (90Sr and U) in groundwaters was predicted for the long-(1000 years) and super-long-term (10 000 years) periods using the microdispersion and macrodispersion approaches. A local model-insert of the lithological and hydraulic heterogeneity was developed for substantiating the macrodispersion parameters. The simulation results show that, during the long-term period, the contaminated waters will be mainly localized within the injection zone (below buffer horizon IV), and during the super-long-term period about 90% of the total amount of neutral wastes will be discharged into the drainage network, whereas uranium will be fully retained within the disposal site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Rumynin, V.G., Subsurface Solute Transport Models and Case Histories (with Applications to Radionuclide Migration), Springer, 2011.

    Book  Google Scholar 

  2. Rybal’chenko, A.I., Pimenov, M.K., and Kostin, P.P., Glubinnoe zakhoronenie zhidkikh radioaktivnykh otkhodov (Deep Disposal of Liquid Radioactive Wastes), Moscow: IzdAT, 1994.

    Google Scholar 

  3. Podobina, V.M., Foraminifery, biostratigrafiya verkhnego mela i paleogena Zapadnoi Sibiri (Foraminifera, Biostratigraphy of the Upper Cretaceous and Paleogene of West Siberia), Tomsk: Izd. Nauchno-Tekhnicheskoi Literatury, 2009.

    Google Scholar 

  4. Pozdniakov, S.P., Bakshevskaya, V.A., Zubkov, A.A., et al., Underground Injection Science and Technology, Tsang, C.F. and Apps, J., Eds., Elsevier, 2005, pp. 203–218.

  5. Bakshevskaya, V.A., Vestn. Mosk. Gos. Univ., Ser. 4: Geol., 2005, no. 1, pp. 45–47.

    Google Scholar 

  6. Pozdniakov, S.P., Bakshevskaya, V.A., Krokhicheva, I.V., et al., Moscow Univ. Geol. Bull., 2012, vol. 67, no. 1, pp. 43–51.

    Article  Google Scholar 

  7. Zinin, A.I., Zinina, G.A., Kurochkin, V.M., et al., in Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems: Fundamentals, Modelling, Experiments and Applications: vol. 2 of Elsevier Geo-Engineering Book Ser., Elsevier, 2004, pp. 747–752.

    Google Scholar 

  8. Shestakov, V.M., Kuvaev, A.A., Lekhov, A.V., et al., Environ. Geol., 2002, vol. 42, nos. 2–3, pp. 214–221.

    CAS  Google Scholar 

  9. Noskov, M.D., Istomin, A.D., Kesler, A.G., et al., Radiochemistry, 2007, vol. 29, no. 2, pp. 204–209.

    Article  Google Scholar 

  10. Murray, C.J., Zachara, J.M., McKinley, J.P., et al., J. Contam. Hydrol., 2013, vol. 153, pp. 122–140.

    Article  CAS  Google Scholar 

  11. Chiang, W.H. and Kinzelbach, W., 3D-Groundwater Modeling with PMWIN, Berlin: Springer, 2001.

    Google Scholar 

  12. Tokarev, I.V., Zubkov, A.A., Rumynin, V.G., et al., Water Resources, 2009, vol. 36, no. 2, pp. 206–213.

    Article  CAS  Google Scholar 

  13. Danilov, V.V., Mathematical modeling of deep disposal of liquid radioactive waste (by the example of Siberian Chemical Combine), Cand. Sci. (Geol.-Mineral.) Dissertation, Tomsk, 2010.

    Google Scholar 

  14. Bakshevskaya, V.A., in Gidrologiya segodnya i zavtra: nauka, obrazovanie, praktika: Materialy mezhdunarodnoi nauchnoi konferentsii (Hydrology Today and Tomorrow: Science, Education, Practice: Proc. Int. Scientific Conf.), Moscow, May 22–24, 2013, Moscow: MAKS, 2013, pp. 276–282.

    Google Scholar 

  15. Carle, S.F. and Fogg, G.E., Math. Geol., 1996, vol. 28, no. 4, pp. 453–477.

    Article  Google Scholar 

  16. Carle, S.F. and Fogg, G.E., Math. Geol., 1997, vol. 29, no. 7, pp. 891–918.

    Article  Google Scholar 

  17. Bakshevskaya, V.A. and Pozdniakov, S.P., Geoekol. Inzh. Geol. Gidrogeol. Geokriol., 2012, no. 6, pp. 560–570.

    Google Scholar 

  18. Carle, S.F., T-PROGS: Transition Probability Geostatistical Software, Ver. 2.0, Davis, California: Univ. of California, 1998.

    Google Scholar 

  19. Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., MODFLOW-2000, the US Geological Survey Modular Ground-Water Model: User Guide to Modularization Concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, Reston, 2000.

    Google Scholar 

  20. Mironenko, V.A. and Rumynin, V.G., Problemy gidrogeoekologii (Problems of Hydrogeoecology), vol. 1: Teoreticheskoe izuchenie i modelirovanie geomigratsionnykh protsessov (Theoretical Study and Modeling of Geomigration Processes), Moscow: Mosk. Gos. Gornyi Univ., 1998.

    Google Scholar 

  21. Shestakov, V.M., Gidrogeodinamika (Hydrogeodynamics), Moscow: Mosk. Gos. Univ., 1995.

    Google Scholar 

  22. Lekhov, A.V., Fiziko-khimicheskaya gidrogeodinamika: uchebnik (Physicochemical Hydrogeodynamics: Textbook), Moscow: KDU, 2010.

    Google Scholar 

  23. Zheng, C. and Wang, P.P., MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems. Documentation and Users Guide: Contract Report SERDP-99-1, Vicksburg, MS: US Army Engineer Research and Development Center, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. P. Pozdniakov.

Additional information

Original Russian Text © M.L. Glinskii, S.P. Pozdniakov, L.G. Chertkov, A.A. Zubkov, V.V. Danilov, V.A. Bakshevskaia, V.N. Samartsev, 2014, published in Radiokhimiya, 2014, Vol. 56, No. 6, pp. 554–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glinskii, M.L., Pozdniakov, S.P., Chertkov, L.G. et al. Regional flow and transport simulation of liquid radioactive waste disposal at the Siberian chemical combine for long- and super-long-term postinjection periods. Radiochemistry 56, 649–656 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: