Skip to main content
Log in

On Kantorovich Problems with a Parameter

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

In this note, we study the Kantorovich problem of optimal transportation of measures on metric spaces in the case where the cost function and marginal distributions depend on a parameter from a metric space. It is shown that the Hausdorff distance between the sets of probability measures with given marginals can be estimated by the distances between the marginals. As a corollary, it is proved that the cost of optimal transportation is continuous with respect to the parameter if the cost function and marginal distributions are continuous in this parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. I. Bogachev, Weak Convergence of Measures (Am. Math. Soc., Providence, R.I., 2018).

    Book  MATH  Google Scholar 

  2. V. I. Bogachev and A. V. Kolesnikov, Math. Surv. 67 (5), 785–890 (2012).

    Article  Google Scholar 

  3. S. T. Rachev and L. Rüschendorf, Mass Transportation Problems (Springer, New York, 1998), Vols. 1, 2.

    MATH  Google Scholar 

  4. F. Santambrogio, Optimal Transport for Applied Mathematicians (Birkhäuser/Springer, Cham, 2015).

    Book  MATH  Google Scholar 

  5. C. Villani, Optimal Transport, Old and New (Springer, New York, 2009).

    Book  MATH  Google Scholar 

  6. I. I. Malofeev, Dokl. Math. 94 (2), 493–497 (2016).

    Article  MathSciNet  Google Scholar 

  7. V. I. Bogachev and I. I. Malofeev, J. Math. Anal. Appl. 486 (1), 1–30 (2020).

    Article  Google Scholar 

  8. V. I. Bogachev, A. N. Doledenok, and I. I. Malofeev, Math. Notes 110 (6), 952–955 (2021).

    Article  MathSciNet  Google Scholar 

  9. J. Bergin, Econ. Theory 13 (2), 471–481 (1999).

    Article  MathSciNet  Google Scholar 

  10. M. Ghossoub and D. Saunders, Econ. Theory Bull. 9 (1), 113–117 (2021).

    Article  MathSciNet  Google Scholar 

  11. V. I. Bogachev, Measure Theory (Springer, Berlin, 2007), Vols. 1, 2.

    Book  MATH  Google Scholar 

  12. N. Gozlan, C. Roberto, P.-M. Samson, and P. Tetali, J. Funct. Anal. 273 (11), 3327–3405 (2017).

    Article  MathSciNet  Google Scholar 

  13. J.-J. Alibert, G. Bouchitté, and T. Champion, Eur. J. Appl. Math. 30 (6), 1229–1263 (2019).

    Article  Google Scholar 

  14. J. Backhoff-Veraguas, M. Beiglböck, and G. Pammer, Calc. Var. Partial Differ. Equations 58, 203 (2019).

    Article  Google Scholar 

  15. J. Backhoff-Veraguas and G. Pammer, Bernoulli 28 (1), 370–394 (2022).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research is supported by the Russian Science Foundation, grant no. 22-11-00015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bogachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I., Popova, S.N. On Kantorovich Problems with a Parameter. Dokl. Math. 106, 426–428 (2022). https://doi.org/10.1134/S1064562422700107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562422700107

Keywords:

Navigation