Skip to main content
Log in

Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence

  • Mathematics
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

An explicit combined shock-capturing finite-difference scheme is constructed that localizes shock fronts with high accuracy and simultaneously preserves the high order of convergence in all domains where the computed weak solutions are smooth. In this scheme, Rusanov’s explicit nonmonotone scheme of the third order is used as a basis one, while the internal scheme is based on the second-order monotone CABARET. The advantages of the new scheme as compared with the WENO scheme of the fifth order in space and third order in time are demonstrated in test computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Godunov, Mat. Sb. 47 (3), 271–306 (1959).

    MathSciNet  Google Scholar 

  2. B. Van Leer, J. Comput. Phys. 32 (1), 101–136 (1979).

    Article  MathSciNet  Google Scholar 

  3. A. Harten, J. Comput. Phys. 49, 357–393 (1983).

    Article  MathSciNet  Google Scholar 

  4. H. Nessyahu and E. Tadmor, J. Comput. Phys. 87 (2), 408–463 (1990).

    Article  MathSciNet  Google Scholar 

  5. G. S. Jiang and C. W. Shu, J. Comput. Phys. 126, 202–228 (1996).

    Article  MathSciNet  Google Scholar 

  6. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  7. V. V. Ostapenko, Comput. Math. Math. Phys. 37 (10), 1161–1172 (1997).

    MathSciNet  Google Scholar 

  8. J. Casper and M. H. Carpenter, SIAM J. Sci. Comput. 19 (1), 813–828 (1998).

    Article  MathSciNet  Google Scholar 

  9. V. V. Ostapenko, Comput. Math. Math. Phys. 40 (12), 1784–1800 (2000).

    MathSciNet  Google Scholar 

  10. O. A. Kovyrkina and V. V. Ostapenko, Dokl. Math. 82 (1), 599–603 (2010).

    Article  MathSciNet  Google Scholar 

  11. O. A. Kovyrkina and V. V. Ostapenko, Math. Models Comput. Simul. 6 (2), 183–191 (2014).

    Article  MathSciNet  Google Scholar 

  12. N. A. Mikhailov, Math. Models Comput. Simul. 7 (5), 467–474 (2015).

    Article  MathSciNet  Google Scholar 

  13. V. V. Ostapenko, Comput. Math. Math. Phys. 38 (8), 1299–1311 (1998).

    MathSciNet  Google Scholar 

  14. O. A. Kovyrkina and V. V. Ostapenko, Dokl. Math. 97 (1), 77–81 (2018).

    Article  Google Scholar 

  15. V. V. Rusanov, Dokl. Akad. Nauk SSSR 180 (6), 1303–1305 (1968).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ostapenko.

Additional information

Original Russian Text © N.A. Zyuzina, O.A. Kovyrkina, V.V. Ostapenko, 2018, published in Doklady Akademii Nauk, 2018, Vol. 482, No. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyuzina, N.A., Kovyrkina, O.A. & Ostapenko, V.V. Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence. Dokl. Math. 98, 506–510 (2018). https://doi.org/10.1134/S1064562418060315

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562418060315

Navigation