Abstract
For Monte Carlo estimators, a variance reduction method based on empirical variance minimization in the class of functions with zero mean (control functions) is described. An upper bound for the efficiency of the method is obtained in terms of the properties of the functional class.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
D. Belomestny, S. Häfner, and M. Urusov, J. Math. Anal. Appl. 458, 393–418 (2018).
R. Christian and G. Casella, Monte Carlo Statistical Methods (Springer, New York, 1999).
S. Clemencon, G. Lugosi, and N. Vayatis, Ann. Stat. 36 (2), 844–874 (2008).
I. T. Dimov, Monte Carlo Methods for Applied Scientists (World Scientific, Singapore, 2008).
P. Glasserman, Monte Carlo Methods in Financial Engineering (Springer Science & Business Media, New York, 2013).
W. Hoeffding, J. Am. Stat. Assoc. 58 (301), 13–30 (1963).
R. Nickl and B. M. Pötscher, J. Theor. Probab. 20 (2), 177–199 (2007).
C. J. Oates, J. Cockayne, F.-X. Briol, and M. Girolami, “Convergence rates for a class of estimators based on Stein’s identity” (2016). arXiv:1603.03220.
C. J. Oates, M. Girolami, and N. Chopin, J. R. Stat. Soc.: Ser. B (Stat. Method.) 79 (3), 695–718 (2017).
R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method (Wiley, New York, 2016).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © D.V. Belomestny, L.S. Iosipoi, N.K. Zhivotovskiy, 2018, published in Doklady Akademii Nauk, 2018, Vol. 482, No. 6.
Rights and permissions
About this article
Cite this article
Belomestny, D.V., Iosipoi, L.S. & Zhivotovskiy, N.K. Variance Reduction in Monte Carlo Estimators via Empirical Variance Minimization. Dokl. Math. 98, 494–497 (2018). https://doi.org/10.1134/S1064562418060261
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1064562418060261