Advertisement

Doklady Mathematics

, Volume 96, Issue 3, pp 583–586 | Cite as

Integrability and continuity of solutions to Fokker–Planck–Kolmogorov equations

  • V. I. BogachevEmail author
  • S. V. Shaposhnikov
Mathematics
  • 23 Downloads

Abstract

New results concerning the local integrability of any order and continuity of solution densities of Fokker–Planck–Kolmogorov equations with nondifferentiable coefficients are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Bogachev and S. V. Shaposhnikov, Dokl. Math. 94 (1), 355–360 (2016).MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. I. Bogachev and S. V. Shaposhnikov, Ann. Mat. Pura Appl. 196 (5), 1609–1635 (2017). doi 10.1007/s10231- 016-0631-2MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Sjögren, Ark. Mat. 11, 153–165 (1973).MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Sjögren, Ann. Inst. Fourier 25 (3–4), 509–518 (1975).CrossRefGoogle Scholar
  5. 5.
    V. I. Bogachev, N. V. Krylov, and M. Röckner, Commun. Partial Differ. Equations 26 (11–12), 2037–2080 (2001).CrossRefGoogle Scholar
  6. 6.
    V. I. Bogachev, N. V. Krylov, and M. Röckner, Russ. Math. Surv. 64 (6), 973–1078 (2009).CrossRefGoogle Scholar
  7. 7.
    V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations (Am. Math. Soc., Providence, R.I., 2015).CrossRefzbMATHGoogle Scholar
  8. 8.
    N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces (Am. Math. Soc., Providence, R.I., 2008).CrossRefzbMATHGoogle Scholar
  9. 9.
    G. Lieberman, J. Funct. Anal. 201, 457–479 (2003).MathSciNetCrossRefGoogle Scholar
  10. 10.
    N. V. Krylov, J. Funct. Anal. 183 (1), 1–41 (2001).MathSciNetCrossRefGoogle Scholar
  11. 11.
    N. V. Krylov, “An analytic approach to SPDEs,” in Stochastic Partial Differential Equations: Six Perspectives, Ed. by R. Carmona and B. Rozovskii (Am. Math. Soc., Providence, R.I., 1999), pp. 185–241.Google Scholar
  12. 12.
    G. Metafune, D. Pallara, and A. Rhandi, Theory Probab. Appl. 54 (1), 116–148 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.St. Tikhon’s Orthodox Humanitarian UniversityMoscowRussia

Personalised recommendations