Skip to main content
Log in

On the nature of the Rayleigh–Bénard convective instability

  • Mathematics
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

The initial stage of the Rayleigh–Bénard convective instability regarded as a nonequilibrium phase transition is reconstructed. Its mechanism is based on spinodal decomposition (diffusion separation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Z. Gershuni, E. M. Zhukhovitskii, and A. A. Nepomnyashchii, Stability of Convective Flows (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  2. D. A. Bratsun, Doctoral Dissertation in Mathematics and Physics (Perm State University, Perm, 2010).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987; Nauka, Moscow, 1988).

    MATH  Google Scholar 

  4. R. Betchov and W. O. Criminale, Jr., Stability of Parallel Flow (Academic, New York, 1967; Mir, Moscow, 1971).

    MATH  Google Scholar 

  5. M. A. Gol’dshtik and V. N. Stern, Hydrodynamic Stability and Turbulence (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  6. D. D. Joseph, Stability of Fluid Motions (Springer, Berlin, 1976; Mir, Moscow, 1981).

    Google Scholar 

  7. Yu. S. Kachanov, V. V. Kozlov, and V. J. Levchenko, Emergence of Turbulence in Boundary Layers (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  8. A. V. Getling, Rayleigh–Bénard Convection: Structure and Dynamics (Editorial URSS, Moscow, 1999) [in Russian].

    MATH  Google Scholar 

  9. V. K. Andreev and V. B. Bekezhanova, Stability of Nonisothermal Fluids (Sib. Fed. Univ., Krasnoyarsk, 2010).

    MATH  Google Scholar 

  10. V. V. Pukhnachov, Model. Mekh. 6 (4), 47–56 (1992).

    MathSciNet  Google Scholar 

  11. H. Haken, Synergetics: An Introduction (Springer-Verlag, Berlin, 1977; Mir, Moscow, 1980).

    MATH  Google Scholar 

  12. E. A. Lukashev, N. N. Yakovlev, E. V. Radkevich, and O. A. Vasil’yeva, AIP Conf. Proc. 1789, 020011 (2016). http://dx.doi.org/. doi 10.1063/1.4968432

    Article  Google Scholar 

  13. A. Münster, Chemische Thermodynamik (Akademie- Verlag, Berlin, 1969; Mir, Moscow, 1971).

    Google Scholar 

  14. I. Prigogine and I. Stengers, Time, Chaos, Quantum: On the Solution of the Paradox of Time (KomKniga, Moscow, 2005) [in Russian].

    Google Scholar 

  15. V. T. Zhukov, N. A. Zaitsev, V. G. Lysov, Yu. G. Rykov, and O. B. Feodoritova, Math. Models Comput. Simul. 4 (4), 440–453 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Radkevich.

Additional information

Original Russian Text © E.V. Radkevich, E.A. Lukashev, N.N. Yakovlev, O.A. Vasil’eva, 2017, published in Doklady Akademii Nauk, 2017, Vol. 475, No. 6, pp. 618–623.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radkevich, E.V., Lukashev, E.A., Yakovlev, N.N. et al. On the nature of the Rayleigh–Bénard convective instability. Dokl. Math. 96, 393–398 (2017). https://doi.org/10.1134/S1064562417040317

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562417040317

Navigation