Skip to main content
Log in

On the accuracy of a posteriori functional error majorants for approximate solutions of elliptic equations

  • Mathematics
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

A new a posteriori functional majorant is obtained for the error of approximate solutions to an elliptic equation of order 2n, n ≥ 1, with an arbitrary nonnegative constant coefficient σ ≥ 0 in the lowest order term σu, where u is the solution of the equation. The majorant is much more accurate than Aubin’s majorant, which makes no sense at σ ≡ 0 and coarsens the error estimate for σ from a significant neighborhood of zero. The new majorant also surpasses other majorants having been obtained for the case σ ≡ 0 over recent decades. For solutions produced by the finite element method on quasi-uniform grids, it is shown that the new a posteriori majorant is sharp in order of accuracy, which coincides with that of sharp a priori error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems (Wiley-Interscience, New York, 1972).

    MATH  Google Scholar 

  2. S. Repin and M. Frolov, Comput. Math. Math. Phys. 42 (12), 1704–1716 (2002).

    MathSciNet  Google Scholar 

  3. I. E. Anufriev, V. G. Korneev, and V. S. Kostylev, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 148 (4), 94–143 (2006).

    Google Scholar 

  4. V. G. Korneev, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 154 (4), 11–27 (2011).

    Google Scholar 

  5. M. A. Churilova, Vestn. Sankt-Peterb. Gos. Univ., Ser. 1: Mat. Mekh. Astron. 1 (1), 68–78 (2014).

    MathSciNet  Google Scholar 

  6. S. Repin and S. Sauter, C. R. Math. Acad. Sci. Paris 343 (5), 349–354 (2006).

    Article  MathSciNet  Google Scholar 

  7. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications (Springer-Verlag, Berlin, 1972).

    Book  MATH  Google Scholar 

  8. V. G. Korneev, High-Order Accuracy Finite Element Schemes (Leningr. Gos. Univ., Leningrad, 1977) [in Russian].

    MATH  Google Scholar 

  9. V. G. Korneev and U. Langer, Dirichlet–Dirichlet Domain Decomposition Methods for Elliptic Problems: h and hp Finite Element Discretizations (World Scientific, London, 2015).

    Book  MATH  Google Scholar 

  10. J. Nitsche, Numer. Math. 15 (3), 224–228 (1970).

    Article  MathSciNet  Google Scholar 

  11. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements (Springer, New York, 2004).

    Book  MATH  Google Scholar 

  12. J. A. Cottrell, J. R. Hughes, and Yu. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, New York, 2009).

    Book  Google Scholar 

  13. M. Ainsworth and J. T. Oden, A posteriori Estimation in Finite Element Analysis (Wiley, New York, 2000).

    Book  MATH  Google Scholar 

  14. I. Babuska, J. R. Witeman, and T. Strouboulis, Finite Elements: An Introduction to the Method and Error Estimation (Oxford Univ. Press, Oxford, 2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Korneev.

Additional information

Original Russian Text © V.G. Korneev, 2017, published in Doklady Akademii Nauk, 2017, Vol. 475, No. 6, pp. 605–608.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneev, V.G. On the accuracy of a posteriori functional error majorants for approximate solutions of elliptic equations. Dokl. Math. 96, 380–383 (2017). https://doi.org/10.1134/S1064562417040287

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562417040287

Navigation