Skip to main content

On problem of the dynamics of a viscoelastic medium with memory on an infinite interval

Abstract

The existence of a weak solution of a boundary value problem for a viscoelasticity model with memory on an infinite time interval is proved. The proof relies on an approximation of the original boundary value problem by regularized ones on finite time intervals and makes use of recent results concerning the solvability of Cauchy problems for systems of ordinary differential equations in the class of regular Lagrangian flows.

This is a preview of subscription content, access via your institution.

References

  1. J. G. Oldroyd, Rheology: Theory and Applications (Academic, New York, 1956; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  2. D. A. Vorotnikov and V. G. Zvyagin, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics (Walter de Gruyter, Berlin, 2008).

    MATH  Google Scholar 

  3. G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics (McGraw-Hill, New York, 1974; Mir, Moscow, 1979).

    MATH  Google Scholar 

  4. P. A. Rebinder, Physicochemical Mechanics (Znanie, Moscow, 1958) [in Russian].

    Google Scholar 

  5. V. P. Orlov and P. E. Sobolevskii, Differ. Integral Equations 4 (1), 103–115 (1991).

    Google Scholar 

  6. Yu. Ya. Agranovich and P. E. Sobolevskii, Nonlin. Anal. 32 (6), 755–760 (1998).

    Article  Google Scholar 

  7. V. G. Zvyagin and V. T. Dmitrienko, Differ. Equations 38 (12), 1731–1744 (2002).

    MathSciNet  Article  Google Scholar 

  8. R. J. DiPerna and P. L. Lions, Invent. Math. 98, 511–547 (1989).

    MathSciNet  Article  Google Scholar 

  9. G. Crippa and C. de Lellis, J. Reine Angew. Math., No. 616, 15–46 (2008).

    MathSciNet  Google Scholar 

  10. V. Zvyagin and V. Orlov, AIP Publ. 1759 (1), 020040–020047 (2016).

    Google Scholar 

  11. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979; Mir, Moscow, 1981).

    MATH  Google Scholar 

  12. K. Yosida, Functional Analysis (Springer-Verlag, Berlin, 1965; Mir, Moscow, 1967).

    MATH  Google Scholar 

  13. B. Z. Vulikh, Brief Course of the Theory of Functions of a Real Variable (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zvyagin.

Additional information

Original Russian Text © V.G. Zvyagin, V.P. Orlov, 2017, published in Doklady Akademii Nauk, 2017, Vol. 475, No. 2, pp. 130–132.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V.G., Orlov, V.P. On problem of the dynamics of a viscoelastic medium with memory on an infinite interval. Dokl. Math. 96, 329–331 (2017). https://doi.org/10.1134/S106456241704010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106456241704010X