Spectra of three-dimensional cruciform and lattice quantum waveguides

Abstract

It is shown that the discrete spectrum of the Dirichlet problem for the Laplacian on the union of two mutually perpendicular circular cylinders consists of a single eigenvalue, while the homogeneous problem with a threshold value of the spectral parameter has no bounded solutions. As a consequence, an adequate one-dimensional model of a square lattice of thin quantum waveguides is presented and the asymptotic behavior of the spectral bands and lacunas (zones of wave transmission and deceleration) and the oscillatory processes they generate is described.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. Exner and O. Post, J. Geom. Phys. 54 (1), 77–115 (2005).

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    P. Kuchment and O. Post, Commun. Math. Phys. 275 (3), 805–826 (2007).

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    D. Grieser, Proc. London Math. Soc. 97 (3), 718–752 (2008).

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    L. Pauling, J. Chem. Phys. 4 (10), 673–677 (1936).

    Article  Google Scholar 

  5. 5.

    S. A. Nazarov, Probl. Mat. Anal. 73, 101–127 (2013).

    Google Scholar 

  6. 6.

    S. A. Nazarov, Comput. Math. Math. Phys. 54 (8), 1261–1279 (2014).

    MathSciNet  Article  Google Scholar 

  7. 7.

    S. A. Nazarov, Dokl. Math. 90 (2), 637–641 (2014).

    MATH  Article  Google Scholar 

  8. 8.

    S. A. Nazarov, St. Petersburg Math. J. 23 (2), 351–379 (2011).

    Article  Google Scholar 

  9. 9.

    M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Leningrad. Gos. Univ., Leningrad, 1980; Reidel, New York, 1986).

    Google Scholar 

  10. 10.

    G. Pólya and G. Szegó, Isoperimetric Inequalities in Mathematical Physics (Princeton Univ. Press, Princeton, N.J., 1951).

    Google Scholar 

  11. 11.

    M. M. Skriganov, Proc. Steklov Inst. Math. 171, 1–121 (1987).

    MathSciNet  Google Scholar 

  12. 12.

    S. A. Nazarov and A. V. Shanin, Appl. Anal. 93 (3), 572–582 (2014).

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    L. Friedlander and M. Solomyak, Israel J. Math. 170, 337–354 (2009).

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    S. A. Nazarov, Theor. Math. Phys. 167 (2), 606–627 (2011).

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. L. Bakharev.

Additional information

Original Russian Text © F.L. Bakharev, S.G. Matveenko, S.A. Nazarov, 2015, published in Doklady Akademii Nauk, 2015, Vol. 463, No. 6, pp. 650–654.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakharev, F.L., Matveenko, S.G. & Nazarov, S.A. Spectra of three-dimensional cruciform and lattice quantum waveguides. Dokl. Math. 92, 514–518 (2015). https://doi.org/10.1134/S1064562415040274

Download citation

Keywords

  • Dirichlet Problem
  • Discrete Spectrum
  • DOKLADY Mathematic
  • Dirichlet Condition
  • Oscillatory Process