Skip to main content
Log in

Homogenization for the p-Laplace operator in perforated media with nonlinear restrictions on the boundary of the perforations: A critical Case

  • Mathematics
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. Jäger, M. Neuss-Radu, and T. A. Shaposhnikova, Nonlinear Anal. Real World Appl. 15, 367–380 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Acerbi, V. Chiado Piat, G. Dal Maso, and D. Percivale, Nonlinear Anal. 18, 481–496 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Gómez, M. Lobo, E. Pérez, A. V. Podolskiy, and T. A. Shaposhnikova, Dokl. Math. 89 (1), 11–15 (2014).

    Article  MATH  Google Scholar 

  4. M. N. Zubova and T. A. Shaposhnikova, Differ. Equations 47 (1), 78–90 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. V. Podol’skii, Dokl. Math. 82 (3), 942–945 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Shaposhnikova and A. Podolskiy, Funct. Differ. Equations 19 (3/4), 351–370 (2012).

    MathSciNet  Google Scholar 

  7. L. Tang, Commun. Partial Differ. Equations 37 (3), 538–559 (2012).

    Article  MATH  Google Scholar 

  8. W. Jäger, M. Neuss-Radu, and T. A. Shaposhnikova, Dokl. Math. 83 (2), 204–208 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. N. Zubova and T. A. Shaposhnikova, Funct. Differ. Equations 12 (3/4), 463–473 (2005).

    MATH  MathSciNet  Google Scholar 

  10. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  11. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications (Academic, New York, 1980; Mir, Moscow, 1983).

    MATH  Google Scholar 

  12. G. V. Sandrakov, Sb. Math. 196 (4), 541–560 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  13. N. Labani and C. Picard, Pitman Res. Notes Math. 208, 294–305 (1989).

    MathSciNet  Google Scholar 

  14. A. Yu. Vorob’ev and T. A. Shaposhnikova, Differ. Equations 39 (3), 387–396 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Gómez, M. Lobo, M. E. Pérez, and T. A. Shaposhnikova, Appl. Anal. 92 (2), 218–237 (2013).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Shaposhnikova.

Additional information

Published in Russian in Doklady Akademii Nauk, 2015, Vol. 463, No. 3, pp. 255–260.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, D., Pérez, M.E., Podolskiy, A.V. et al. Homogenization for the p-Laplace operator in perforated media with nonlinear restrictions on the boundary of the perforations: A critical Case. Dokl. Math. 92, 433–438 (2015). https://doi.org/10.1134/S1064562415040110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562415040110

Keywords

Navigation