Advertisement

Doklady Mathematics

, Volume 90, Issue 2, pp 613–615 | Cite as

Stieltjes differential in nonlinear momentum problems

Mathematics
  • 35 Downloads

Keywords

Bounded Variation DOKLADY Mathematic Nonlinear Boundary Discontinuity Point Nikodym Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Savchuk and A. A. Shkalikov, Proc. Steklov Inst. Math. 283, 181–196 (2013).CrossRefMATHGoogle Scholar
  2. 2.
    L. K. Kusainova, A. Zh. Monashova, and A. A. Shkalikov, Math. Notes 93(4), 629–632 (2013).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. M. Savchuk and A. A. Shkalikov, Funct. Anal. Its Appl. 44(4), 270–285 (2010).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    A. M. Savchuk and A. A. Shkalikov, Math. Notes 80(6), 814–832 (2006).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    P. B. Dzhakov and B. S. Mityagin, Russ. Math. Surveys 61(4), 663–766 (2006).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    V. A. Mikhailets, Funct. Anal. Its Appl. 30(2), 144–146 (1996).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Yu. V. Pokornyi, Dokl. Math. 59(1), 34–37 (1999).MathSciNetGoogle Scholar
  8. 8.
    F. V. Atkinson, Discrete and Continuous Boundary Problems (Academic, New York, 1964; Mir, Moscow, 1968).MATHGoogle Scholar
  9. 9.
    Yu. V. Pokornyi, M. B. Zvereva, and S. A. Shabrov, Russ. Math. Surveys 63(1), 109–153 (2008).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Yu. V. Pokornyi, Zh. I. Bakhtina, M. B. Zvereva, and S. A. Shabrov, Sturm’s Oscillation Method in Spectral Problems (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations