Automorphisms of a graph with intersection array {99, 84, 1; 1, 14, 99}

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. A. Makhnev, Dokl. Math. 88, 737–740 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    A. A. Makhnev and D. V. Paduchikh, Algebra Logika 51(4), 476–495 (2012).

    Article  MathSciNet  Google Scholar 

  3. 3.

    P. J. Cameron, Permutation Groups (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  4. 4.

    P. J. Cameron and J. van Lint, Graphs, Codes, and Designs (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  5. 5.

    A. L. Gavrilyuk and A. A. Makhnev, Dokl. Math. 81, 439–442 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  6. 6.

    A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs (Springer-Verlag, Berlin, 1989).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Makhnev.

Additional information

Original Russian Text © P.S. Ageev, A.A. Makhnev, 2014, published in Doklady Akademii Nauk, 2014, Vol. 458, No. 1, pp. 7–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ageev, P.S., Makhnev, A.A. Automorphisms of a graph with intersection array {99, 84, 1; 1, 14, 99}. Dokl. Math. 90, 525–528 (2014). https://doi.org/10.1134/S1064562414060015

Download citation

Keywords

  • Regular Graph
  • Intersection Number
  • Prime Order
  • Maximal Match
  • Intersection Array